Показати скорочений опис матеріалу

dc.contributor.author Kysil, V. en
dc.contributor.author Popov, P. T. en
dc.contributor.author Drachuk, O. en
dc.contributor.author Hnenna, V. en
dc.contributor.author Martyniuk, I. en
dc.date.accessioned 2025-03-12T07:16:55Z
dc.date.available 2025-03-12T07:16:55Z
dc.date.issued 2024
dc.identifier.citation Concept of information technology for diagnosis and prognosis of glaucoma based on machine learning methods / V. Kysil, P. T. Popov, O. Drachuk [et al.] // Proceedings of the 5th international workshop on intelligent information technologies & systems of information security with CEUR-WS, 28 March, Khmelnytskyi, Ukraine. – City Research Online, 2024. – P. 171–181. – URL: http://openaccess.city.ac.uk/ en
dc.identifier.issn 1613-0073
dc.identifier.uri https://dspace.vnmu.edu.ua/123456789/7367 en
dc.description.abstract The current challenge is early and automated diagnosis and prognosis of glaucoma using information technology based on machine and deep learning methods. The conducted analysis of the methods and tools for diagnosing and predicting the glaucoma has shown that now there are many such methods and tools, including those based on machine learning and deep learning, but all of them have certain drawbacks, such as their "niche" (lack of mass use, development of tools exclusively for proving and testing the theoretical positions developed by the authors), complexity of development, complexity of use, high cost, the need for an ophthalmologist to decipher the data obtained, etc. Therefore, the aim of this study is to develop the information technology for diagnosis and prognosis of glaucoma based on machine learning methods, which will have minimal requirements and resource needs, be characterized by low cost and mass use, and will not require an ophthalmologist to decipher the data generated by the neural network. The proposed information technology for diagnosis and prognosis of glaucoma based on machine learning methods automates the processing of fundus retinal images and optical coherence tomography images based on machine learning in order to automatically diagnose glaucoma at early stages by classifying the eye as normal or glaucomatous. en
dc.language.iso en en
dc.publisher CEUR Workshop Proceedings en
dc.subject glaucoma en
dc.subject glaucoma diagnosis en
dc.subject glaucoma prognosis en
dc.subject machine learning en
dc.subject information technology en
dc.title Concept of information technology for diagnosis and prognosis of glaucoma based on machine learning methods en
dc.type Article en


Файли цього елементу

Даний матеріал зустрічається у наступних зібраннях

Показати скорочений опис матеріалу

Пошук


Перегляд

Мій обліковий запис

Статистика