Repository of National Pirogov Memorial Medical University, Vinnytsia

Classification of quadratic functional equations for five object variables on quasigroups

Show simple item record

dc.contributor.author Koval, R. F. en
dc.date.accessioned 2021-05-30T09:49:28Z
dc.date.available 2021-05-30T09:49:28Z
dc.date.issued 2014
dc.identifier.citation Koval R. F. Classification of quadratic functional equations for five object variables on quasigroups / R. F. Koval // Eastern European Scientific Journal (Mathematik- und Technikwissenschaften). - Düsseldorf (Germany) : Auris Verlag, 2014. – № 6. – P. 310-317. en
dc.identifier.uri https://dspace.vnmu.edu.ua/123456789/5275
dc.description.abstract We consider functional equations over quasigroup operations. The functional equation w = u is called general if the functional variables contained in its record are pair wise different, balanced if each object variable has exactly one appearance on the left-hand side and on the right-hand side of the equation, quadratic if each object variable has exactly two appearances in the equation. We prove that every quadratic functional equation for five object variables is commutative equivalent to just one of the functional equations (1) – (23). en
dc.language.iso en en
dc.subject quasigroup operations en
dc.subject balanced identities en
dc.subject functional equation en
dc.subject quadratic functional equation en
dc.subject parastrophic equivalence en
dc.subject commutative equivalence en
dc.title Classification of quadratic functional equations for five object variables on quasigroups en
dc.type Article en


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account

Statistics