Короткий опис (реферат):
У статті розглянуто удосконалені математичні моделі фізіологічного процесу м’язового скорочення на основі відомих гіпотез процесу функціонування опорно-рухомої системи організму людини. Зокрема, за першою феноменологічною гіпотезою А. Хілла, на основі реологічних моделей складових м’язової тканини, була розроблена математична модель зміни силового наванта- ження м’язової тканини для режимів ізометричного тетанусу і скорочення (видовження) м’яза з постійною швидкістю. Встановле- но, що загальним недоліком підходу А. Хілла є припущення про те, що співвідношення «сила–швидкість» має виконуватися мит- тєво після зміни силового навантаження, що не відповідає експериментальним даним з відновлення силового напруження після ступінчатої зміни довжини м’язу. Для подолання зазначених недоліків було обрано гіпотезу А. Хаксклі, яка ґрунтується на прин- ципах кінетики розподілу місць зв’язування актину (мономеру) із білковим філоментом (поперечних місточків). Введено припу- щення, що місця зв’язування на актині знаходяться досить далеко один від одного, так що кожному місточку доступне тільки одне таке місце зв’язування. На основі гіпотези А. Хакслі була розроблена математична модель силового навантаження м’язової ткани- ни, яка залежить від функції розподілу кількості поперечних місточків. Результати порівняння теоретичного і експериментального досліджень силового навантаження на м’яз, на основі розроблених математичних моделей у вигляді диференціальних рівнянь, підтвердили адекватність використання відомих теоретичних положень для опису протікання біологічних процесів у м’язових тканинах.