
An Artificial Intelligence-based Support Tool for Lumbar Spinal Stenosis Diagnosis from Self-Reported 

History Questionnaire 

Frederik Abela MD*, Eugene Garciab*, Vera Andreevac MD, Nikolay Nikolaevc,d MD, Serhii Kolisnyke MD 

PhD, Ruslan Sarbaevb, Ivan Novikovb BS, Evgeniy Kozinchenkob, Jack Kimb PhD, Andrej Rusakovb MS, 

Raphael Mourad PhDf,b, Darren R. Lebl MDa 

 

aHospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA   

bRemedy Logic, 1177 Avenue of the Americas, 5th Floor New York, NY, 10036, USA 

cFederal State Budgetary Institution «Federal Center for Traumatology, Orthopedics and Arthroplasty» of the 

Ministry of Health of the Russian Federation (Cheboksary), Cheboksary, Russia, 428020 

dFederal State Budgetary Educational Institution of Higher Education «Chuvash State University named after 

I.N. Ulyanov», Cheboksary, Russia, 428015 

eVinnitsa National Medical University, Pyrohova St, 56, Vinnytsia, Vinnytsia Oblast, Ukraine, 21018 

fUniversity of Toulouse, CNRS, UPS, 31062 Toulouse, France  

 

*Co-first authors 

 

Mail addresses: 

Frederik Abel, MD: abelf@hss.edu 

Eugene Garcia: eugene.garcia@remedylogic.com 

Vera Andreeva, MD: Vbarieva@mail.ru 

Nikolay Nikolaev, MD: nikolaevns@mail.ru  

Serhii Kolisnyk, MD PhD: s.p.kolisnyk@vnmu.edu.ua  

Ruslan Sarbaev: ruslan.sarbaev@remedylogic.com  

Ivan Novikov: ivan.novikov@remedylogic.com 

Evgeniy Kozinchenko: evgeniy.kozinchenko@remedylogic.com 

Jack Kim, PhD: jack.kim@remedylogic.com 

 Andrej Rusakov, MS: a.rusakov@remedylogic.com  

Raphael Mourad, PhD: raphael.mourad@univ-tlse3.fr  

Darren R. Lebl, MD: research@leblspinemd.com 

© 2023 published by Elsevier. This manuscript is made available under the Elsevier user license
https://www.elsevier.com/open-access/userlicense/1.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S1878875023015838
Manuscript_247445a42eb06506653c1fe4ab807fb6

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S1878875023015838


Corresponding author:  

Raphael Mourad, PhD,  Université Toulouse III Paul Sabatier, 118 Rte de Narbonne, Toulouse 31062, France, 

Email: raphael.mourad@univ-tlse3.fr  

 

Key words:  

lumbar spinal stenosis; diagnosis; artificial intelligence; machine learning; self-reported questionnaire. 

 

Running Title: 

AI-Support for Lumbar Stenosis Diagnosis 

 

Declaration of Conflicting Interests: 

Eugene Garcia, Ruslan Sarbaev, Ivan Novikov, Evgeniy Kozinchenko, Jack Kim, Andrej Rusakov, and Raphael 

Mourad are employees of Remedy Logic. The rest of the authors declare no potential conflicts of interest with 

respect to the research, authorship, and/or publication of this article. 

 

Source of Funding:  

R.M. was supported by Université Paul Sabatier and Remedy Logic. S.K. was supported by Vinnitsa National 

Medical University and Remedy Logic. J.K. and A.R. were supported by Remedy Logic.  

 

 



1 

 

 1 

Abstract  2 

Objectives 3 

Symptomatic lumbar spinal stenosis (LSS) leads to functional impairment and pain. While radiological 4 

characterization of the morphological stenosis grade can aid in the diagnosis, it may not always correlate 5 

with patient symptoms. Artificial intelligence (AI) may diagnose symptomatic LSS in patients solely 6 

based on self-reported history questionnaires.  7 

Methods 8 

We evaluated multiple machine learning (ML) models to determine the likelihood of LSS using a self-9 

reported questionnaire in patients experiencing low back pain and/or numbness in the legs. The 10 

questionnaire was built from peer-reviewed literature and a multidisciplinary panel of experts. Random 11 

forest, lasso logistic regression, support vector machine, gradient boosting trees, deep neural networks, 12 

and automated machine learning models were trained and performance metrics compared.  13 

Results 14 

Data from 4,827 patients (4,690 patients without LSS: mean age 62.44, range 27 – 84 years, 62.8% 15 

females, and 137 patients with LSS: mean age 50.59, range 30 – 71 years, 59.9% females) were 16 

retrospectively collected. Among the evaluated models, the random forest model demonstrated the 17 

highest predictive accuracy with an area under the receiver operating characteristic curve (AUROC) 18 

between model prediction and LSS diagnosis of 0.96, a sensitivity of 0.94, a specificity of 0.88, a 19 

balanced accuracy of 0.91 and a Cohen’s kappa of 0.85.  20 

Conclusions 21 

Our results indicate that ML can automate the diagnosis of LSS based on self-reported questionnaires 22 

with high accuracy. Implementation of standardized and intelligence-automated workflow may serve as a 23 

supportive diagnostic tool to streamline patient management and potentially lower healthcare costs.  24 

 25 

 26 

 27 
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 28 

Introduction 29 

 Degenerative lumbar spinal stenosis (LSS) is a significant source of disability in older adults, 30 

which affects an estimated 103 million persons annually worldwide1. The clinical syndrome of LSS is 31 

characterized by chronic lower back and extremity pain, accompanied by loss of mobility and function, 32 

which can steadily reduce patients’ quality of life2. First-line treatments include modification of activity, 33 

analgesia, and physical therapy. In cases where conservative treatments fail, decompressive spinal surgery 34 

is often considered as an option to relieve symptoms. As such, LSS is associated with a significant 35 

socioeconomic burden and high healthcare costs3,4. Hence, strategies for simplified, fast, and automated 36 

diagnosis based on clinical symptoms may have an important societal impact. 37 

 Substantial improvements of standardized diagnostic accuracy are streamlined by artificial 38 

intelligence (AI), in particular machine learning (ML) models to develop data-driven algorithms and 39 

intelligent automation (IA) to enhance human intelligence and therapeutic-decision making. Most 40 

commonly, ML models have successfully been trained to automatically detect and classify LSS based on 41 

MRI studies of the lumbar spine, achieving high accuracy levels comparable to those of subspecialist 42 

radiologists5,6. Other approaches applied ML to determine surgical candidacy for spinal surgery based on 43 

lumbar spine MRI’s7 or by using hybrid AI models, that combine features from both imaging and clinical 44 

information8. More recently, ML methods have been utilized to determine prior authorization approval for 45 

LSS surgery based on medical vignettes, which consisted of both clinical data and MRI findings9. 46 

Although diagnostic imaging is a mainstay for the evaluation of LSS, radiographically affected patients 47 

may be clinically asymptomatic. Therefore, clinical symptoms also play a significant role in therapeutic 48 

decision-making. Patients with symptomatic LSS can be assessed using self-reported questionnaires10. 49 

However, ML has not yet been tested to identify such patients based solely on patient questionnaires 50 

without any imaging data, which could potentially facilitate intelligence-automated therapeutic decision-51 

making. 52 

Here, we propose a novel AI approach to diagnose LSS from self-reported history questionnaires 53 

that assess clinical history, pain character, and mobility of patients. Different ML models were trained on 54 



3 

 

retrospectively collected data from patients with diagnosed LSS (LSS+) and without LSS (LSS-) and their 55 

performance compared, including random forest, lasso logistic regression, support vector machine 56 

(SVM), gradient boosting trees, deep neural networks (DNN), and automated machine learning (H2O 57 

autoML). Finally, key contributor variables for predicting patients with LSS+ were identified. 58 

 59 

Materials and Methods 60 

 61 

Subjects and Data collection 62 

This multicenter study was performed in two hospitals (BLINDED FOR REVIEW and 63 

BLINDED FOR REVIEW), and one outpatient clinic (BLINDED FOR REVIEW). Data of patients were 64 

retrospectively collected from self-reported questionnaires from August 2021 to September 2022. 65 

Additionally, health records were assessed, including past clinical history, treatments, and results of 66 

examinations, for all patients. The selection was limited to patients who presented with primary 67 

symptoms of low back pain and/or numbness in the back and legs, and experienced difficulties in 68 

performing daily activities. The age criteria for inclusion were set at 20 years or older. The questionnaires 69 

were filled out by our clinical administrators based on the answers provided by each interviewed patient. 70 

LSS diagnosis (presence/absence) was confirmed by an orthopedic surgeon based on clinical history of 71 

each patient and reports from lumbar spine MRI studies, which served as the ground truth.  72 

This retrospective study received institutional review board approval and written informed 73 

consent was obtained from all subjects. 74 

 75 

Questionnaire 76 

 A literature review was performed to identify peer-reviewed medical literature that assess 77 

diagnosis and outcome measures of LSS (Supplementary material 1). Items from these articles, as well as 78 

relevant items extracted from The Short Form (36) Health Survey (SF-36)11, EQ-5D12, and Oswestry 79 

Disability Index (ODI)13, were collected. In total, 205 questions were accumulated, which were then 80 

compiled with the input of an expert panel comprising a multidisciplinary team of doctors in the fields of 81 
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spinal surgery, rehabilitation medicine, interventional and diagnostic radiology. The final self-reported 82 

questionnaire included 26 questions (qualitative and continuous outcome variables) including pain, pain 83 

severity and type, activities prevented by pain (e.g. pain prevents sleeping rate), but also motor 84 

impairment, the use of moving device, history of spinal cord or cauda equina injury, general health, and 85 

mental health (e.g, anxiety or depression level) (Table 1).  86 

 87 

Data Imputation and Machine Learning 88 

 The dataset comprised 4,690 patients without LSS (LSS-; mean age 62.44; range 27 – 84 years; 89 

62.8% females) and 137 patients with LSS (LSS+; mean age 50.59; range 30 – 71 years: 59.9% females), 90 

summing up to 4,827 patients in total. The overall percentage of missing data was 29%. To cope with 91 

missing data, values were imputed applying the median, where necessary. Subsequently, the data were 92 

used to train the machine learning models. Patient data were randomly split into 80% for fine-tuning and 93 

training of the machine learning models (3,758 LSS- and 104 LSS+) and 20% for testing predictions (932 94 

LSS- and 33 LSS+). To ensure a balanced training dataset for effective model training, patients without 95 

LSS were down-sampled to match the number of patients with LSS, resulting in a total of 208 patients for 96 

training (104 LSS- and 104 LSS+). Different machine learning models were trained and compared, 97 

including random forest, lasso logistic regression, support vector machine (SVM), gradient boosting trees 98 

(XGBOOST), deep neural network (DNN), and automated machine learning (H2O autoML). Variable 99 

importance was computed using the mean decrease in accuracy in the out-of-bag sample during training.  100 

Hyper-parameters were obtained by fine-tuning with 5-fold cross-validation. 101 

 102 

Data and Statistical Analysis 103 

All data analyses, including univariate and bivariate analyses, prediction performance metrics, 104 

and plots were done using R (Version 4.2.1, the R Foundation). The following R packages were used for 105 

computations and fine-tuning: ranger for random forest and variable importance (https://cran.r-106 

project.org/web/packages/ranger), tuneRanger for hyper-parameter fine-tuning (https://cran.r-107 

project.org/web/packages/tuneRanger/), glmnet for lasso logistic regression (https://cran.r-108 
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project.org/web/packages/glmnet), e1071 for SVM (https://cran.r-project.org/web/packages/e1071), 109 

XGBOOST for extreme gradient boosting (https://cran.r-project.org/web/packages/xgboost), nnet for 110 

deep neural network (https://cran.r-project.org/web/packages/nnet/), and caret for SVM, XGBOOST, and 111 

DNN fine-tuning (https://topepo.github.io/caret/). For quantitative variables, differences of means 112 

between the LSS+ patients and LSS- patients were tested using the Student’s test. For qualitative 113 

variables, differences of proportions between the LSS+ patients and LSS- patients were assessed using 114 

the Fisher’s exact test. To account for multiple tests, the Bonferroni p-value threshold was used and 115 

computed as 0.05/34=0.0014. Performance metrics, including area under the receiver operating 116 

characteristic curve (AUROC), area under the precision-recall curve (AUPRC), sensitivity, specificity, 117 

Cohen’s kappa, accuracy, and the F1-score, were calculated for all models. 118 

 119 

Results  120 

 121 

Univariate analysis of LSS predictors 122 

 Table 2 displays the differences in assessed outcome variables between patients with LSS 123 

(LSS+) and patients without LSS (LSS-). Most predictors exhibited significant p-values, with p<0.0014 124 

(Bonferroni threshold). It included predictors describing general health (mean difference of -18 points out 125 

of 100, 95% confidence interval (CI) [-20.71; -15.45], p<0.0001), mental health (mean difference of -17 126 

points out of 100, 95%CI [-19.98; -14.34], p<0.0001), pain severity (mean difference of +25.37 points out 127 

of 100, 95%CI [22.64; 28.11], p<0.0001), or pain preventing activities, e.g. pain preventing standing 128 

(mean difference of  +35.7 points out of 100, 95%CI [31.41; 39.99], p<0.0001). Additionally, reduced or 129 

damaged motor skills, problems with performing daily activities (i.e. problems performing washing or 130 

dressing), or use of moving devices were significantly different between LSS+ and LSS- patients. Thus, 131 

univariate analysis demonstrated strong associations between LSS and most self-reported history 132 

predictors, suggesting their potential use in building a ML model for accurate prediction of  LSS. 133 

 134 

Prediction of LSS based on Machine Learning 135 
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The accuracy of our ML approach in predicting LSS was assessed and compared with the ground 136 

truth. For this purpose, the patient history data were randomly split into 80% of patients for training a 137 

series of ML models, while the remaining 20% of patients were reserved to estimate the prediction 138 

accuracy of the different models. The performance of the random forest, lasso regression, SVM, 139 

XGBOOST, DNN, and automated machine learning models is summarized in Table 3. 140 

Most ML models showed excellent prediction performances when classifying LSS+ versus LSS- 141 

patients. Among the models, the random forest exhibited the highest prediction performance, achieving 142 

an AUROC of 0.96 (95% CI [0.949; 0.980]), sensitivity of 0.94, specificity of 0.88, and Cohen’s kappa 143 

value of 0.85 (Figure 1A). The second-best performing model was XGBOOST, which demonstrated an 144 

AUROC of 0.96, a sensitivity of 0.97, a specificity of 0.86, and a Cohen’s kappa value of 0.88 (Figure 145 

1D).  146 

Since the data were highly imbalanced (4,690 LSS+ patients and 137 LSS- patients), we also 147 

computed the balanced accuracy, a more suitable metric for imbalanced data. The random forest also 148 

showed a high balanced accuracy of 0.91, while the XGBOOST model achieved the highest value of 149 

0.92. Our random forest was chosen as the optimal trade-off between a high AUROC and balanced 150 

accuracy for predicting LSS from self-reported history data, demonstrating excellent predictive 151 

performance metrics.  152 

 153 

Importance of predictors 154 

 Next, we conducted an assessment to identify the key predictors of LSS. For this purpose, we 155 

computed variable importance using the random forest model to identify the most significant predictors 156 

(Figure 2). Among the list of predictors, problems with performing daily activities, including washing or 157 

dressing, were found to be the most significant predictors for LSS+ patients. Additionally, pain severity, 158 

and pain or emotional distress that restricts social interactions and/or activities were significant 159 

contributors to patients with LSS. 160 

 161 

Discussion 162 
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 163 

 Applications of artificial intelligence (AI), including machine learning (ML) models and 164 

intelligent automation (IA), are increasing rapidly in the medical domain and have demonstrated 165 

remarkable success in various clinical settings and research areas. AI systems strive to improve diagnostic 166 

processes, prognostication, and outcomes in a transparent and observer-independent manner, thereby 167 

enhancing therapeutic decision-making. The field of spine surgery, in particular, benefits from AI 168 

applications and IA tools, as diagnostics and therapeutic decision-making often require clinical expertise 169 

and rely on interpretation of ramified factors such as medical history, imaging, or perioperative data14. 170 

In this article, we tested a series of ML models to predict symptomatic LSS based on a simple 171 

self-reported history questionnaire of patients with low back pain and/or numbness in the back and legs, 172 

and having problems performing daily activities. Data from 4,827 patients (4,690 LSS- and 137 LSS+) 173 

were collected and key factors identified that revealed strong association with LSS+ patients. 174 

Subsequently, different ML models were trained and evaluated on a balanced subset of the self-reported 175 

predictors, including random forest, lasso logistic regression, support vector machine (SVM), gradient 176 

boosting trees, deep neural networks (DNN), and H2O automated machine learning. Of these, the random 177 

forest model demonstrated the highest diagnostic accuracy with a prediction error as measured by the 178 

AUROC of 0.96, a sensitivity of 0.94, a specificity of 0.88, a balanced accuracy of 0.91, and a Cohen’s 179 

kappa of 0.85. The computation of variable importance revealed that problems with performing daily 180 

activities, pain severity and emotional distress that restrict social interaction or activity rate as were the 181 

most significant contributors to patients with LSS+. As such, self-reported questionnaires may be feasible 182 

to predict symptomatic LSS patients in an IA-based manner, ultimately enhancing human therapeutic 183 

decision-making. 184 

Previous studies have utilized AI applications in spine surgery, with a focus on radiological 185 

features extracted from MRI data and employing various ML models to detect and diagnose LSS5,6,15. 186 

While radiological characterization of morphological stenosis grade contributes to the diagnosis of LSS, it 187 

may not always correlate with pain intensity and functional disability experienced by affected 188 

patients16,17. Consequently, incorporating AI-guided diagnosis of LSS based on other aspects or in 189 
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combination with radiological features may be a more comprehensive approach to reflect the clinical 190 

syndrome of LSS. However, such approaches have been investigated in only a limited number of studies. 191 

Ren et al. investigated natural language processing-based ML models based on positive symptoms 192 

extracted from electronic health records18. Contrasting our study, different models were tested to 193 

discriminate patients with LSS from patients with lumbar disc herniation, and found that a Long Short-194 

Term Memory DNN achieved the highest capacity with an AUROC of 0.85 for this task. Another 195 

approach used ML algorithms on data of patients that performed five-repetition sit-to-stand tests19. The 196 

algorithm, a fuzzy rule-based system, achieved a classification accuracy of 96.2% for patients with disc 197 

herniation, LSS, and chronic lower back pain. Five-repetition sit-to-stand tests are designed to assess 198 

functional impairment, which has been identified as the most significant contributor variable to LSS+ 199 

patients in our dataset, followed by pain and emotional distress that restrict social interaction or activity 200 

rate. 201 

Accordingly, these predictors have been determined as critical factors for treatment and decision-202 

making in LSS+ patients by previous studies. The presence of disability, along with pain and radiological 203 

stenosis grade, has been associated with the likelihood of requiring surgical therapy20. Similarly, 204 

functional disability and pain severity have been correlated with impairment of health-related quality of 205 

life in patients with LSS or lumbar disc herniation21. Pain severity has been as identified as the fourth 206 

most important contributor to LSS patients in our dataset, suggesting that actual restriction of daily 207 

activities may be more significant for the diagnosis of LSS patients. However, it should be considered 208 

that pain and functional impairment are closely related, and the inability to perform daily activities likely 209 

is a secondary effect of pain. Another significant predictive variable for the diagnosis of LSS was the 210 

patient’s mental status, evaluated through our questionnaire based on the patient’s subjective grading of 211 

their mental health, encompassing a broader field of psychological factors including depression or 212 

anxiety. Prior studies have indicated that these factors, particularly preoperative depression, are associated 213 

with increased severity of postoperative LSS-related symptoms and poorer long-term outcomes following 214 

decompression22,23. Therefore, although it can be challenging to assess in clinical practice, considering the 215 
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patient’s overall mental health could significantly contribute to a more comprehensive management 216 

approach and improve the patient’s prognosis. 217 

 Our study contains several limitations. First, the dataset was comprised 4690 LSS- patients and 218 

only 137 LSS+ patients, which required down-sampling to obtain a more balanced sample size. Second, 219 

the ground truth of LSS+ diagnosis in this cohort was based on clinical history of each patient and reports 220 

from MRI examinations and did not include independent classification by other experts. Third, our ML 221 

models solely focused on diagnosis of LSS on basis of self-reported symptoms in questionnaires. 222 

Symptoms of LSS may partially overlap those of other concomitant degenerative spinal disorders (e.g. 223 

degenerative disc disease, spondylolisthesis) in these patients and differentiation of these entities was not 224 

addressed by our models. Additionally, other factors relevant for management of LSS were not 225 

investigated, including surgical decision-making or impairment of patients’ quality of life. Fourth, our 226 

algorithms were not validated in an external patient cohort within this study, potentially limiting their 227 

generalizability. Finally, our proposed approach is simplified and did not integrate other features, such as 228 

radiological stenosis grade, that may have further increased diagnostic accuracy in detecting LSS patients. 229 

 230 

Conclusions 231 

 232 

In summary, our results demonstrate that AI can be applied to diagnose symptomatic LSS in 233 

patients based on simplified, self-reported history questionnaires with high accuracy even in the absence 234 

of any imaging input into the model. Functional impairment and pain/emotional distress that restrict 235 

social interaction or activity rate are key contributors to patients with LSS. Implementation of 236 

standardized and automated AI-guided workflow may act as an intelligent automation tool to identify 237 

patients with LSS using simple self-reported history questionnaires and may more efficiently and cost-238 

effectively help determine which patients required advanced imaging studies such as MRI and 239 

consideration for surgery. 240 

 241 

 242 
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Figure Legends 309 
 310 

Figure 1: Prediction performance of lumbar spinal stenosis (LSS) based on self-reported history 311 

questionnaires for several machine learning models. Receiver operating characteristic curve (ROC) of the 312 

random forest (A), lasso logistic regression (B),  support vector machine (SVM, C), XGBOOST (D), deep 313 

neural network (DNN, E), and automated machine learning (H2O autoML, F).  314 

 315 
Figure 2: Top key variables to predict lumbar spinal stenosis probability. Variable importance was 316 

calculated using random forests with permutations.  317 

 318 
 319 
 320 







Tables 

 

Table 1: Self-reported questionnaire with 26 questions to assess manifestation of symptomatic LSS. 

 

Question 

 

 

Value 

1. Lumbar spinal stenosis Yes/No 

2. General health (0 – Worst; 100 –  Best general health imaginable) 0 – 100 

3. Mental health (0 – Worst; 100 –  Best mental health imaginable) 0 – 100 

4. Congenital diseases or conditions Yes/No 

5. Spinal cord or cauda equina injury  Yes/No 

6. Pain severity (0 – Zero pain;  100 – Extreme pain) 0 – 100 

7. Pain type 

Extreme cold 

 

Yes/No 

Extreme hot or burning sensation Yes/No 

Itching Yes/No 

Mechanical Yes/No 

Sharp stabbing Yes/No 

Throbbing and/or pulsating Yes/No 

8. Bending forward increases pain severity Yes/No 

9. Standing up increases pain severity Yes/No 

10. Walking increases pain severity Yes/No 

11. Pain increases while sleeping Yes/No 

12. Pain prevents lifting weights (0 – Zero pain;  100 – Extreme pain) 0 – 100 

13. Pain prevents sitting (0 – Zero pain;  100 – Extreme pain) 0 – 100 

14. Pain prevents sleeping (0 – Zero pain;  100 – Extreme pain) 0 – 100 

15. Pain prevents standing (0 – Zero pain;  100 – Extreme pain) 0 – 100 

16. Pain prevents walking  (0 – Zero pain;  100 – Extreme pain) 0 – 100 

17. Daily activities limited by physical pain Yes/No 

18. Pain when lifting right leg: 

- No 

- Back pain only 

- Pain radiating down the leg 

 

Yes/No 

Yes/No 

Yes/No 

19. Pain when lifting left leg: 

- No 

- Back pain only  

- Pain radiating down the leg 

 

Yes/No 

Yes/No 

Yes/No 

20. Motor skills reduced or damaged Yes/No 

21. Moving devices Yes/No 

22. Problems performing daily activities (0 – Zero problems;  100 – Extreme problems) 0 – 100 

23. Problems washing and dressing yourself (0 – Zero problems;  100 – Extreme problems) 0 – 100 

24. Problems with strenuous physical activities (0 – Zero problems;  100 – Extreme problems) 0 – 100 

25. Energy level (0 – No energy at all;  100 – Highest energy level imaginable) 0 – 100 

26. Pain or emotional distress (0 – Zero;  100 – Extreme pain/emotional distress) 0 – 100 

 

 

 

 

 



Table 2: Univariate analyses of predictors associated with the diagnosis of LSS. 

 

Variable 

 

 

LSS- 

(n=4644) 

 

LSS+ 

(n=137) 

 

OR 

 

Mean difference 

 

95%CI 

 

p-value 

General health  57.6 39.51  -18 [-20.71; -15.45] <0.0001 

Mental health  66.83 49.67  -17 [-19.98; -14.34] <0.0001 

Congenital diseases/conditions 11.68% 36.50% 4.34  [2.97; 6.30] <0.0001 

Spinal cord or cauda equina injury  14.71% 50.36% 5.88  [4.10; 8.43] <0.0001 

Pain severity 46.09 71.46  25.37 [22.64; 28.11] <0.0001 

Pain type 

- Extreme cold 0.23% 0.73% 3.08  [0.07; 21.51] 

 

0.2959 

- Extreme hot or burning sensation 7.06% 15.33% 2.37  [1.39; 3.87] 0.0012 

- Itching 0.58% 0.73% 1.25  [0.03; 7.72] 0.5596 

- Mechanical 18.42% 14.60% 0.74  [0.43; 1.21] 0.2604 

- Sharp stabbing 18.72% 27.74% 1.66  [1.09; 2.47] 0.0141 

- Throbbing and/or pulsating 6.20% 5.11% 0.8  [0.31; 1.72] 0.7198 

Bending forward increases pain severity 18.61% 32.12% 2.07  [1.40; 3.02] <0.0001 

Standing up increases pain severity 10.13% 27.74% 3.4  [2.25; 5.06] <0.0001 

Walking increases pain severity 14.05% 48.18% 5.68  [3.96; 8.15] <0.0001 

Pain increases while sleeping 22.37% 48.18% 3.34  [2.30; 4.84] <0.0001 

Pain prevents lifting weights  42.36 75.41  33.05 [30.08; 36.03] <0.0001 

Pain prevents sitting  32.53 57.15  24.62 [20.76; 28.48] <0.0001 

Pain prevents sleeping  26.68 51.69  25.01 [20.22; 29.81] <0.0001 

Pain prevents standing  33.92 69.62  35.7 [31.41; 39.99] <0.0001 

Pain prevents walking   35.00 69.64  34.64 [30.39; 38.89] <0.0001 

Daily activities limited by physical pain 82.20% 98.54% 14.62  [3.95; 122.34] <0.0001 

Pain when lifting right leg: 

- No 69.46% 45.26% 0.36  [0.25; 0.52] 
 

<0.0001 
- Back pain only 10.21% 18.25% 1.96  [1.20; 3.08] 0.0044 

- Pain radiating down the leg 4.71% 15.33% 3.66  [2.14; 5.99] <0.0001 

Pain when lifting left leg: 

- No 68.14% 43.07% 0.35  [0.25; 0.50] 
 

<0.0001 
- Back pain only 10.77% 19.71% 2.03  [1.27; 3.16] 0.0021 

- Pain radiating down the leg 
4.78% 15.33% 3.61  [2.11; 5.91] 

<0.0001 

Motor skills reduced or damaged 57.38% 93.43% 10.56  [5.37; 23.68] <0.0001 

Moving devices 5.48% 34.31% 9  [6.04; 13.26] <0.0001 

Problems performing daily activities  25.94 59.12  33.18 [30.20; 36.17] <0.0001 

Problems washing and dressing yourself  20.77 42.54  21.77 [19.23; 24.32] <0.0001 

Problems with strenuous physical activities  34.48 61.54  27.06 [23.13; 30.00] <0.0001 

Energy level  61.49 35.56  -25.93 [-29.06; -22.81] <0.0001 

Pain or emotional distress  

 

24.12 

 

59.80 

  

35.68 

 

[31.67; 39.68] 

 
<0.0001 

95%CI = 95% confidence interval; LSS = Lumbar spinal stenosis; OR = Odds ratio. 

 

 

 



Table 3: Table of predictive performance metrics for the different models. 

Model Sensitivity Specificity Kappa AUROC Accuracy F1 

 

Balanced 

Accuracy 

 

 

AUPRC 

 

 

RF 

 

 

0.9394 

 

 

0.8777 

 

 

0.8485 

 

 

0.9645 

 

 

0.8798 

 

 

0.9338 

 

 

0.9085 

 

 

0.8943 

 

Lasso regression 

 

0.8788 

 

0.8809 

 

0.8485 

 

0.9461 

 

0.8808 

 

0.9345 

 

0.8798 

 

0.9008 

 

SVM 

 

0.8485 

 

0.8273 

 

0.7576 

 

0.9129 

 

0.828 

 

0.9028 

 

0.8379 

 

0.9062 

 

XGBOOST 

 

0.9697 

 

0.8627 

 

0.8788 

 

0.9582 

 

0.8663 

 

0.9257 

 

0.9162 

 

0.8971 

 

DNN 

 

0.8788 

 

0.838 

 

0.7576 

 

0.9268 

 

0.8394 

 

0.9097 

 

0.8584 

 

0.9035 

 

H2O autoML 

 

0.9394 

 

0.8691 

 

0.8485 

 

0.9556 

 

0.8715 

 

0.9289 

 

0.9042 

 

0.896 

 

AUPR = Area under precision-recall curve; AUROC = Area under the receiver operating characteristic; DNN = 

Deep neural network; RF = Random forest; SVM = Support vector machine. 

 

 

 

 

 




