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Abstract. This article describes the development of a cost-effective, efficient, and accessible solution for diagnosing hand movement disorders using 

smartphone-based computer vision technologies. It highlights the idea of using ToF camera data combined with RG data and machine learning algorithms 
to accurately recognize limbs and movements, which overcomes the limitations of traditional motion recognition methods, improving rehabilitation and 

reducing the high cost of professional medical equipment. Using the ubiquity of smartphones and advanced computational methods, the study offers a new 

approach to improving the quality and accessibility of diagnosis of movement disorders, offering a promising direction for future research and application 
in clinical practice. 
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ŚLEDZENIE ZABURZEŃ RUCHU DŁONI ZA POMOCĄ SMARTFONA 

W OPARCIU O METODY WIZJI KOMPUTEROWEJ 

Streszczenie. W niniejszym artykule opisano opracowanie opłacalnego, wydajnego i dostępnego rozwiązania do diagnozowania zaburzeń ruchu ręki 

przy użyciu technologii wizyjnych opartych na smartfonach. Podkreślono w nim ideę wykorzystania danych z kamery ToF w połączeniu z danymi RG 

i algorytmami uczenia maszynowego do dokładnego rozpoznawania kończyn i ruchów, co przezwycięża ograniczenia tradycyjnych metod rozpoznawania 
ruchu, poprawiając rehabilitację i zmniejszając wysokie koszty profesjonalnego sprzętu medycznego. Wykorzystując wszechobecność smartfonów 

i zaawansowane metody obliczeniowe, badanie oferuje nowe podejście do poprawy jakości i dostępności diagnostyki zaburzeń ruchu, oferując obiecujący 

kierunek przyszłych badań i zastosowań w praktyce klinicznej. 

Słowa kluczowe: opieka zdrowotna, informatyczne technologie medyczne, analiza obrazu, wizja komputerowa, sztuczna inteligencja, zaburzenia ruchu 

Introduction 

Existing research represents that kinematic analysis of human 

movements is critical in rehabilitation research and clinical 

practice to assess motor function in people with motor system 

disorders caused by neurological or musculoskeletal disorders. 

The development of markerless motion capture systems, such as 

systems based on 3D depth cameras, including technologies such 

as Kinect, allows us to assess joint kinematics without the rather 

poor quality of information perception at the level of marker 

systems, which are the benchmark for such tasks [10]. 

Given the comprehensive development of artificial 

intelligence systems, namely machine learning methods 

and the gradual increase in the computing capabilities 

of smartphones [5, 9], and in particular their specialized 

processors for performing tasks related to artificial intelligence, 

new horizons are opening up for the development of this area 

and the implementation of more compact solutions that would not 

require additional equipment other than that available to almost 

every person with access to the Internet [9, 26]. 

Modern methods of rehabilitation after upper extremity 

injuries are quite long in terms of time and often require the 

supervision of a rehabilitation therapist to monitor the correctness 

of the exercises. Artificial intelligence automates diagnostic 

process, reducing the burden on both the doctor and the patient 

by reducing the time required to supervise the patient [5, 27]. 

One of the disadvantages of professional medical equipment 

for the diagnosis of upper limb disorders is its cost and, as a result, 

its limited availability, which automatically makes it inaccessible 

to most countries where public funding for medicine is low. 

Thus, the question arises of developing a cheap, affordable, 

fast and effective solution that could at least partially address 

the above problems. 

1. Materials and methods 

The purpose of this paper is to analyze and present 

the shortcomings of the means of diagnosing motor disorders 

of the upper extremities based on computer vision technologies. 

The TrueDepth camera [24] will be used as the target technology 

for the study. The advantage of this method is that the camera 

is included by default in every Apple phone or tablet since 2017, 

except for the SE series. This solves the problem of accessibility 

of this method for a very wide category of users. In addition, 

this technology will improve the accuracy of object recognition 

in space by providing additional data on their shape and distance. 

The TrueDepth camera includes several components that work 

together to capture 3D information. It uses a dot projector 

to project more than 30,000 invisible dots onto an object, thereby 

collecting extensive visual information. This system is capable 

of recording depth and capturing accurate data in three-

dimensional space. 

A typical structure of this camera looks like the one shown 

in Fig. 1. The array of sensors and cameras is located on top 

of the smartphone in the so-called "Notch" or "Dynamic Island", 

and at a minimum it includes the following components: 

 12-megapixel camera: A 12-megapixel camera with a ƒ/2.2 

aperture for taking photos and videos. 

 Point Projector: Projects points into space to create a detailed 

3D map. 

 Infrared camera: captures the points projected by the point 

projector for 3D mapping, with a resolution of 7 to 12 

megapixels depending on the model. 

 Flood Illuminator: adds infrared light to improve the system's 

visibility and accuracy in low-light conditions. 

 

Fig. 1. The typical structure of TrueDepth 

https://www.scopus.com/affil/profile.uri?id=60070091&origin=AuthorResultsList
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This camera is able to capture information in a three-

dimensional format with high quality and accuracy, so accurate 

that it can be used to recognize the user's face and further control 

access to the device and to sensitive user data. 

It is relevant that Apple did not make its technology closed [2] 

to third-party users, so it was the basis for many scientific 

developments that are somehow related to medicine. 

This technology allows you to receive information 

in the RGBD format [14, 21] (Read Green Blue Depth), which 

means that in addition to color data, each pixel also records 

its depth (distance from the camera) in three-dimensional space. 

Fig. 2 shows the view of the resulting image in RGBD format. 

On the left is color information (RGB), on the right is information 

in the form of a depth map [3, 4] of the image. A detailed image 

of the hand is shown in Fig. 3. 

 

Fig. 2. RGBD image (color information on the left, depth information on the right) 

  

Fig. 3. A cloud of points with upper limbs 

 

Fig. 4. Point cloud with RGB data 

Apple has an open API [15] to access the full functionality 

of TrueDepth, so development can be significantly accelerated 

by using an existing testing platform [12]. 

Thus, the next problem to be solved is the recognition 

of the hand (hand, fingers and their position in space) in real time 

on a mobile device. This task can be conveniently divided into 

several stages: 

 search for the hand; 

 search for key points of the hand. 

The software tool will work not only on devices equipped 

with TrueDepth technology, so you need to consider the case 

when hand recognition will take place in a 2D environment. 

The need for additional 3D data arises when there 

is a situation in which it is impossible or problematic to clearly 

define the target area of the hand or when it is impossible 

to unambiguously determine the location of hand landmarks 

that are partially in the camera's field of view or overlapped 

with other hand objects. In addition, additional 3D data helps 

in low light conditions or when there is a high amount 

of background noise in a 2D image, as the quality of detection 

decreases in such conditions. 

 

Fig. 5. General block diagram of the algorithm for recognizing key points of the hand 

Returning to the problem of implementing the function 

of searching for key points of the hand, this task is quite typical 

and currently one of the best solutions for 2D data, if not better, 

is MediaPipe Hands [11]. 

2. MediaPipe hands 

This project implements the search for key points of the hand 

in 2D data. The use of this solution is due to cases when 

the smartphone is not equipped with a TrueDepth camera. 

This solution includes a modified SSD (Single Shot Multibox 

Detector) [8, 16] neural network for hand detection, a modified 

FPN neural network [17, 27], and a regression model 

that determines 21 key points of the hand, shown in Fig. 6. 

This approach is a standard in the field of hand landmark 

recognition and provides enough information for its further use 

in fine motor skills tests, so use this approach in the further 

development of the neural network for hand landmark detection. 

 

Fig. 6. Location of key points of the hand [15] 

This solution has the following flowchart, is shown in Fig. 7. 

From the flowchart, hand recognition does not take place 

every frame, but only when the palm changes location relative to 

the hand landmarks of the previous frame, which gives a strong 

increase in execution speed by reducing the number of required 

operations, which is especially important for working with limited 

mobile graphics card resources. 

The input information is an RGB stream of frames, 

and the output information is 21 3D coordinates of the key points 

of the hand, the probability of finding the hand in the frame, 

and the left or right hand marker. 
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Fig. 7. MediaPipe Hands block diagram 

One of the important and key features is that it was developed 

and adapted for use on mobile devices; a comparative table 

of performance is given below [1, 7, 25]. 

Table 1. Comparison of performance of models for finding key points of the hand 

Model Params (M) MSE 
Time(ms)  

Pixel 3 

Time (ms) 

Samsung 

S20  

Time (ms) 

iPhone 11 

Light 1 11.83 6.6 5.6 1.1 

Full 1.98 10.05 16.1 11.1 5.3 

Heavy 4.02 9.817 36.9 25.8 7.5 

 
Given this data and the characteristics of modern smartphones, 

its make assumptions about the execution of a neural network 

on modern smartphones. For this purpose use data on the GPUs 

of smartphones, since the main work is executed on them.  

The Samsung Galaxy S20 (2020) has an Adreno 650 graphics 

card, with a floating-point performance speed (gflop/s) of 1202.1 

(fp32). It is this model that is shown in the table, its newer model 

Samsung Galaxy S23 (2023) already has an Adreno 740 graphics 

card with the following characteristics of data execution speed 

(gflops/s) - 3481.6 (fp32) [13, 22]. 

Table 2. Table comparing the computing capabilities of the Adreno 650 and Adreno 

740 GPUs 

GPU fp32 (GFLOPS) 

Adreno 650  1202.1 

Adreno 740 3481.6 

Difference +2 279.5 (2.89) 

 

Given the data obtained, its assume that the speed 

of BlazePalm will also be 2.89 times faster than on an older 

generation device.  

The Pixel 3 (2018) smartphone is equipped with an Adreno 

630 GPU with a floating-point performance rate of 727 (fp32) 

gflop/s, while the Pixel 8 (2023) [17] has a Mali-G715 MP7 with 

a capacity of 2415.8 (fp32) gflop/s. 

Table 3. Table comparing the computing capabilities of the Adreno 630 

and Immortalis-G715s MC10 GPUs 

GPU fp32 (GFLOPS) 

Adreno 630  727 

Mali-G715 MP7 2415.8 

Difference +1 688,8 (3.32) 

 

The table represents that the increase in power has been 3.3 

times in 5 years. 

The Apple iPhone 11 (2017) smartphone is equipped with 

a built-in Apple A13 Bionic GPU, the speed of floating point 

operations (gflop/s) is 629.8 (fp32), while the Apple iPhone 15 

(2023) with Apple A16 Bionic GPU is 1789.4 (fp32). 

Table 4. Table comparing the computing capabilities of the A13 Bionic and A16 

Bionic GPUs 

GPU fp32 (GFLOPS) 

 A13 Bionic  629.8 

A16 Bionic 1789.4 

Difference +1 159.6 (2,84) 

 

The table shows that the increase in power over 6 years was 

more than 3 times, which in practice should theoretically speed up 

the operation of neural networks by 3 times. 

Coming back to MediaPipe Hands, its use is conditioned 

by those cases when 3D data is not available. 

To test the operation of this technology, its compile the source 

code of the application using Xcode (Fig. 8), which is available 

in the MediaPipe model example repository [27]. 

 

Fig. 8. Xcode 

In the demo version, implementation of the ability to collect 

performance data for further analysis by saving it in json format, 

which will contain a list of measurements containing two types 

of data InferenceTime in milliseconds of the model and timestamp 

at which the delay was obtained. 

During the testing of this model, a peculiarity was noticed 

that inferenceTime slowly increased over time, and only in some 

modes. To evaluate this factor, tests were conducted on three 

devices: iPhone 13, iPhone SE and iPad Mini 6 generation. These 

devices are united by the fact that they use almost the same CPU 

and GPU of the same generation and that they belong to the lowest 

price point among the entire Apple product line. 

For the measurements, it was decided to test for 295 seconds, 

since after this period, the stability of the application dropped 

significantly, which indicated the quality of the results obtained. 

As part of the preliminary data processing, it was decided 

to recalculate the timestamp, which contained the number 

of milliseconds since the beginning of the UNIX era (Jan 1, 1970), 

by presenting it in the format of time since the beginning 

of the test. 

After that, it was decided to rebuild the dataset by determining 

the minimum, maximum, and average inference Time values 

within each second of the test, while filtering out outliers 

in the data. This was applied by using the interquartile range 

(IQR) method according to the following formula: 

𝐷′ =  {𝑥 ∈  𝐷| 𝐿𝐵 ≤  𝑥 ≤  𝑈𝐵} 

where: 𝐷′ is the dataset after removing outliers, 𝐷 is original 

dataset, 𝑄1 is the 25th percentile of 𝐷, 𝑄3 is the 75th percentile 

of D, 

𝐼𝑄𝑅 = 𝑄3 − 𝑄1, 

𝐿𝐵 = 𝑄1 − 1.5 × 𝐼𝑄𝑅, 

𝑈𝐵 = 𝑄3 + 1.5 × 𝐼𝑄𝑅.  
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2.1. Multisensory hand keypoints detection 

There are few studies on this topic, as multisensory object 

detection is mainly focused on improving the quality of AI 

for vehicle autopilots, and because the topic of hand keypoints 

detection is quite specific. However, these studies describe quite 

useful methods for detecting objects in multisensory data, which 

can be used for hand recognition tasks.   

A scientific article [13] describes the architecture 

of the ContFuse neural network that uses LiDAR and RGB 

camera data to detect objects. First, RGB data is processed 

and then combined with a feature map obtained from LiDAR, 

after which the final object detection is executed. 

Another study [14] describes the architecture of an MMF 

neural network that also uses RGB and LiDAR data. It describes 

a somewhat more complex approach to feature fusion, namely 

the use of two separate fusion layers – Point-wise feature fusion 

and ROI-wise feature fusion. 

It should be noted that TrueDepth technology is based 

on a ToF camera, unlike LiDAR, on which the research is based. 

TrueDepth uses a VCSEL laser, and is functionally designed 

to obtain fairly detailed information about objects in the vicinity 

(up to 2m), while LiDAR allows for much more accurate 

and detailed information even at a great distance. Despite this, 

the final result of both technologies is a cloud of points that differ 

in density and distance. And this creates the necessary conditions 

for implementation on a mobile platform, since the fact that 

TrueDepth data is significantly smaller than LiDAR data, which 

speeds up the entire processing cycle. 

In contrast to the above detection methods, the specificity 

of object detection on a mobile platform is precisely the strong 

resource limitation compared to others, so the approach 

we propose is that the use of 3D data should be only when 

the confidence factor in hand recognition is lower than that 

required for further accurate search of key points of the hand. 

In the above proposed neural network architectures, the rather 

heavy processes of feature map search and fusion occur 

continuously on both 2D and 3D data, which has a significant 

impact on their performance. 

2.2. Flutter 

This framework allows the application to be implemented 

on the key platforms for this study. To run on different platforms, 

the application is compiled into native code for each platform, 

which allows you to get identical performance and access 

to platform functionality at a level that is identical to native 

applications developed for each platform separately. 

As part of the research, we need the native features of each 

platform, for Android we need to use the NPU, GPU and RGB 

camera of the smartphone, for IOS we need NPU, GPU, 

TrueDepth camera, RGB camera. This problem is solved 

by implementing plugins for the Flutter framework. 

3. Experimental results  

After testing, the data on the performance of the MediaPipe 

HandLandmark Detection model was obtained. Several tests were 

conducted for each device, for each of the model's operating 

modes. The results are divided into three categories: 

 One-hand detection mode with one hand in the frame. 

 Two-hand detection mode with one hand in the frame. 

 Two-hand detection mode with two hands in the frame. 

 
For the iPhone 13: Fig. 9–11. 

For the iPhone SE (2022): Fig. 12–14. 

For the iPad Mini 6 generation: Fig. 15–17. 

For clarity, was compared these results between devices: Fig. 18–

20. 

 

 

Fig. 9. Single hand key points detection on IPhone 13 

 

Fig. 10. Single hand keypoints detection on IPhone 13 multihand mode 

 

Fig. 11. 2 hands keypoints detection on IPhone 13 multihand mode 

 

Fig. 12. Single hand keypoints detection on IPhone SE singlehand mode 

 

Fig. 13. Single hand keypoints detection on IPhone SE multihand mode 
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Fig. 14. 2 hands keypoint detection on IPhone SE in multihand mode 

 

Fig. 15. Single hand keypoint detection on IPad Mini in singlehand mode 

 

Fig. 16. Single hand keypoint detection on IPad Mini in multihand mode 

 

Fig. 17. 2 hands keypoint detection on IPad Mini in multihand mode 

 

Fig. 18. Inference time comparison, single hand 

 

Fig. 19. Inference time comparison, multihand mode, 1 hand   

 

Fig. 20. Inference time comparison, multihand mode, 2 hands   

Fig. 20 represents the impossibility of the model to work in 

the mode of detecting key points of both hands, as can be seen 

from the graph, in fact, only the iPad Mini can work without 

jumps in the model's latency. This may be due to several factors, 

the main one is the larger body area compared to smartphones, 

which contributes to rapid heat dissipation. Therefore, as a result, 

smaller smartphones can see a huge jump in performance. The 

iPhone SE has the smallest body of all the devices tested, and 

although it has identical GPU and CPU characteristics to the 

iPhone 13, it either starts to lower frequencies first or reduces 

them more than other devices used in the test. 

4. Conclusions 

The article discusses the prospects for the use of technological 

tools for the diagnosis of upper extremity motor disorders. The 

article shows the need to develop a more affordable and cost-

effective tool based on existing smartphones [18,19,23]. For this 

purpose, it is proposed to use machine vision technologies on 

smartphones. The research presents the need to develop a model 

for high-quality recognition of limbs and their movements for 

further analysis of the data obtained by doctors. To improve the 

quality of pattern recognition on mobile devices, it is proposed to 

use volumetric data from the ToF camera of Apple smartphones. 

The research presents the concept of a neural network model 

for using these capabilities, which would theoretically allow 

maintaining a balance between speed and quality of pattern 

recognition in conditions where the performance of classical 

recognition methods is limited by poor quality of the original data. 

To implement this model, we propose to use the techniques used 

in object detection for self-driving vehicles. These techniques are 

proposed to be significantly reworked to optimize their 

computational complexity and adapt them to the type of data 

obtained from a mobile ToF camera [19,20,23]. This approach 

will be very relevant and useful when used in telemedicine 

services [6, 20]. 

As a confirmation of the idea, was measured the performance 

of the considered model for detecting key points on three different 

devices with identical CPU and GPU, in three different modes. 

For this purpose, graphs of the dependence of the delay on the 

algorithm's operation time are presented to illustrate these 

differences. 
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