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Objectives: Carbapenem- and colistin-resistant Klebsiella pneumoniae were isolated from war victims 
treated in hospitals in Ukraine. The question was whether these pandrug-resistant K. pneumoniae are pa-
thogenic and capable of causing disease in a broader context.
Methods: Klebsiella pneumoniae clinical isolates (n = 37) were tested for antibiotic resistance and subjected 
to whole-genome sequencing (WGS). In addition, their pathogenicity was tested by serum resistance and 
two separate animal models.
Results: Isolates belonging to the sequence types (ST) 23, 147, 307, 395, and 512 were found to harbor 
resistance genes against carbapenems and cephalosporins. Nine isolates carried point mutations in pmrB 
and phoP genes associated with colistin resistance. All bacteria were equipped with multiple virulence 
genes, and the colistin-resistant isolates each carried 10 different genes. Colistin-resistant K. pneumoniae 
were more serum-resistant, more virulent against G. mellonella larvae, and displayed an increased survival 
in mice compared to colistin-susceptible bacteria. The iucA, peg-344, rmpA, rmpC, and rmpD genes were 
associated with increased virulence in animals.
Conclusions: Pandrug-resistant K. pneumoniae in Ukraine are hypervirulent and retain their pathogenicity, 
highlighting the need to prevent disseminated spread.

© 2024 The Author(s). Published by Elsevier Ltd on behalf of The British Infection Association. This is an 
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction

Klebsiella pneumoniae is one of the leading bacterial causes of 
mortality globally, responsible for 20% of all deaths attributable to 

antimicrobial resistance (AMR).1 These multidrug-resistant organ-
isms (MDRO) are often carbapenemase-producing, resulting in ex-
tensive drug resistance (XDR) with few treatment options. The 
dissemination is dominated by nosocomial spread by a few clonal 
lineages.2 To reduce such spread, infection prevention and control 
measures, including rapid identification of XDR strains and isolation 
of colonized patients, have been implemented throughout health-
care systems in many countries.3 Despite these strategies, health-
care-associated outbreaks of highly resistant clones regularly occur, 
disseminating between hospitalized patients.4 Antimicrobial sus-
ceptibility testing and sequencing should be done on all strains 
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suspected or confirmed as carbapenemase-producing to monitor 
outbreaks and prevent further dissemination.

A major question is whether XDR bacterial species lose their 
virulence, and hence the ability to cause disease and spread in the 
community. Antimicrobial-resistant K. pneumoniae, carrying carba-
penemase (KPC), are frequently less virulent compared to suscep-
tible non KPC-producing strains.5 This aligns with the theory of the 
decreased pathogenicity of acquiring antimicrobial resistance. Car-
rying plasmids with AMR genes may impair bacterial virulence and 
reduce essential cellular functions.6 For instance, introducing co-
listin resistance in K. pneumoniae, using the plasmid-borne mobile 
colistin resistance gene (mcr-1) reduces the biological virulence and 
growth of K. pneumoniae.7 However, certain clonal lineages of mul-
tidrug-resistant Escherichia coli and K. pneumoniae may be able to 
retain their virulence while also maintaining the dissemination of 
plasmids.8 Virulence traits of K. pneumoniae include overproduction 
of capsular polysaccharides and hypermucoviscosity, and genes ex-
pressing these phenotypes are carried on the chromosome or on 
plasmids.9 Sequence type (ST) 23 is, for example, associated with 
hypermucoviscosity.10

We recently reported the presence of highly XDR gram-negative 
bacterial infections in war victims in Ukraine, of which several 
strains of K. pneumoniae were pandrug-resistant (PDR), i.e., resistant 
to all antimicrobials tested.11 Since our initial report of emerging 
XDR and PDR Enterobacterales from war-torn Ukraine, there have 
been multiple accounts of the secondary spread of carbapenemase- 
producing gram-negative bacilli to countries caring for wounded 
victims of the war.11–14 These studies all support the presence of a 
significant issue involving the spread of carbapenemases, particu-
larly those belonging to the NDM- and OXA-48-groups, within the 
Ukrainian healthcare system. These isolates cause severe, difficult- 
to-treat nosocomial infections within a resource-scarce healthcare 
system under immense pressure.15 The aim of this study was to 
investigate these XDR and PDR K. pneumoniae regarding genes en-
coding for antimicrobial resistance and virulence factors as well as 
pathogenicity.

Materials and methods

Bacterial growth conditions

All clinical XDR (n = 28) and PDR (n = 9) K. pneumoniae isolates 
were selected from sentinel testing of war victims in Ukraine be-
tween February and September 2022.11 Clinical samples were mainly 
obtained from wounded soldiers and civilians including children 
having infected burns and shrapnel wounds when treated at tertiary 
hospitals in Ukraine. The exact locations cannot be revealed due to 
the ongoing conflict. Klebsiella pneumoniae were grown on blood 
agar plates at 37 °C. Bacteria were incubated overnight and sub-
cultured on fresh blood agar plates for an additional 3 h at 37 °C. 
Klebsiella pneumoniae was collected, washed with PBS, and OD600 

was measured followed by dilution in PBS to the required optical 
density. For mice infection experiments, bacteria were incubated 
overnight and then diluted 1:100 into fresh Brain Heart Infusion 
(BHI) broth and cultured to an optical density (OD600) of 0.3. Sam-
ples were frozen at −80 °C in 10% glycerol, and after subculturing an 
aliquot was counted prior to infection. Klebsiella pneumoniae subsp. 
pneumoniae strain NCTC 9633 (ATCC 13883) was used as a control in 
mouse experiments.

Determination of AMR in K. pneumoniae isolates

Antibiotic susceptibility testing was performed according to the 
European Committee on Antimicrobial Susceptibility Testing 
(EUCAST) guidelines at the EUCAST reference laboratory in Växjö 
(Sweden). Disc diffusion testing was performed, and for isolates that 

were either meropenem-resistant, or susceptible with increased 
exposure, broth microdilution was performed according to the 
International Organization for Standardization method.11

XDR and PDR were defined according to previously used defini-
tions.16,17 Briefly, XDR was defined as non-susceptible to at least one 
in all but 2 fewer antimicrobial categories including antimicrobials 
against Enterobacterales, i.e., aminoglyocsides, ceftaroline (anti- 
MRSA cephalosporin), anti-pseudomonal penicillins + β-lactamase 
inhibitors, carbapenems, non-extended spectrum cephalosporins 
(1st and 2nd generation cephalosporins), extended-spectrum ce-
phalosporins (3rd and 4th generation cephalosporins), cephamycins, 
fluoroquinolones, folate pathway inhibitors, glycylcyclines, mono-
bactams, penicillins (ampicillin), penicillins + β-lactamase inhibitors, 
phenicols, and polymyxins. Klebsiella pneumoniae was considered 
AMR against fosfomycin according to current guidelines from EU-
CAST (13). In addition, PDR was defined as non-susceptibility to all 
agents in all antimicrobial categories as outlined above (12).

Whole-genome sequencing and bioinformatics

DNA was extracted from freshly subcultured colonies of the study 
isolates using the DNA Tissue Kit (Qiagen, Hilden, Germany) on the 
EZ1 automated extraction system (Qiagen). Quantification of the 
extracted DNA was performed using the Qubit 4.0 assay (Life 
Technologies, Carlsbad, CA). Library preparation using the Nextera 
XT kit (Illumina, San Diego, CA) and paired-end, short-read se-
quencing of the study isolates was performed on the NovaSeq 6000 
system (Illumina) at Biomarker Technologies (BMK) (Munster, 
Germany). The previously proposed virulence score, ranging be-
tween 0–5, was used as a marker for bacterial virulence.18 Illumina 
reads were filtered using Trimmomatic (v0.32) and assembled using 
SPAdes (v3.15.5). Prokka v1.14.6 was utilized for genome annotation, 
providing functional annotations for the assembled contigs. The 
assembled genomes were analyzed using Kleborate (https://github. 
com/klebgenomics/Kleborate) to deduce the multilocus sequence 
types (MLST), antimicrobial resistance genes, and virulence profiles. 
PointFinder (https://bio.tools/PointFinder) was used for mutational 
analysis associated with antimicrobial resistance. Finally, prediction 
of the protein coding-genes was performed using Prodigal (https:// 
github.com/hyattpd/Prodigal) and analyzed against reference pro-
tein sequences of PmrB (NCBI accession no. YP_005225933.1), PhoP 
(Uniprot id: A0A1Y0PZG2_KLEPN), PhoQ (UniProt id: 
A0A0H3GLK4_KLEPH), and MgrB (UniProt id: A0A2W0U461_KLEPN).

The core genome MLST scheme for K. pneumoniae was down-
loaded from cgMLST.org. The allele calling was performed using 
chewBBACA (v3.3.3). The pair-wise distances between isolates were 
calculated using GitHub: tseemann/ cgmlst-dists cgmlst-dists, and 
the tree was created in R (v4.3.0) using the hclust library. Plotting 
and annotations of the tree were performed in iTOL using the 
Kleborate output and AMRFinder databases.

Available sequence data

All sequences have been submitted to the National Center for 
Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.gov); 
SUB14387023 and BioProject ID: PRJNA1102281.

Serum resistance

Normal human serum (NHS) was isolated from the blood of 14 
healthy donors, pooled, and stored at −80 °C. Written consent was 
obtained according to the recommendations of the local ethics 
committee in Lund (Sweden; 2017/582). The antimicrobial peptide 
nisin A was from Handary (0301; Brussels, Belgium). Recombinant 
Ornithodoros moubata complement inhibitor (OmCI) blocking clea-
vage of C5 was expressed as described.19 SYTOX Green DNA dye was 
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obtained from Thermo Fisher Scientific (S7020; Waltham, MA). GVB+ 

+ buffer used in experiments consisted of 5 mM Veronal buffer [pH 
7.3], 140 mM NaCl, 0.1% gelatin, 1 mM MgCl2, and 5 mM CaCl2. To 
assess bacterial survival, bacteria were diluted in PBS to two con-
centrations [OD600 = 0.01 and 0.025 corresponding to 106 colony 
forming units (CFU) per mL and 2.5 × 106 CFU/mL for colony count 
and fluorescence measurement, respectively]. For colony count, 
bacteria were mixed with GVB++ buffer supplemented with 30% NHS 
or 30% NHS with 50 µg/mL OmCI (a negative control). After in-
cubation at 37 °C for 1 h, bacteria were serially diluted and plated in 
triplicates onto blood agar. After overnight incubation, CFUs were 
counted and bacterial survival was calculated as a percentage re-
lative to the control. For the fluorescence measurement GVB++ buffer 
with 30% NHS, 30% NHS with 10 µg/mL nisin A, or 30% NHS with 
50 µg/mL OmCI (a negative control) was added to bacteria. All 
samples were supplemented with 2 µM SYTOX Green dye (a cell 
death indicator). Bacteria were incubated at 37 °C for 2 h, while the 
bactericidal activity of NHS was simultaneously monitored using the 
SYTOX Green signal (measured with BioTek Cytation5 at 504/523 nm 
excitation/emission).

Galleria mellonella infection model

Galleria mellonella larvae were purchased from Insekto Reptilfoder 
(Helsingborg, Sweden). Thirty isolates were collected from blood agar 
plates, and diluted in PBS to OD600 = 1 (ca. 108 CFU/mL) and OD600 = 0.1 
(ca. 107 CFU/mL). The diluted bacteria were kept on ice until injection 

into G. mellonella larvae. Freshly delivered larvae were injected with 
10 µl bacteria (106 or 105 CFU) or PBS into the last, left proleg using BD 
insulin syringes (Micro-Fine U-100 0.3 mL 30 G; Becton Dickinson, 
Franklin Lakes, NJ). Five larvae were transferred into the Petri dishes for 
each experimental condition (two concentrations of each isolate, PBS 
control, and uninfected larvae). Thereafter, larvae were incubated in 
Petri dishes at 37 °C for 5 days (120 h). The survival of the larvae was 
monitored every 12 h (at 8 am and 8 pm) while assessing the mela-
nization and movement/reaction to the stimulus to determine the 
survival or death of the worms. The survival of the larvae was used as a 
proxy for bacterial virulence when comparing colistin- and carba-
penem-resistant K. pneumoniae with colistin-susceptible and carba-
penem-resistant K. pneumoniae.

Mouse acute pneumonia infection model

Six to eight-week-old male C57BL/6 J mice (Jackson Laboratories, 
Bar Harbor, ME) were maintained in filter-top cages on standard la-
boratory chow and water ad libitum until use. Mice were anesthetized 
using inhalation of isoflurane (Forene; Abbott, Wiesbaden, Germany) 
and inoculated with 2.5 × 106 CFU K. pneumoniae in 50 µl PBS into the 
nares.20 Uninfected control mice received 50 µl of PBS only, and in 
these mice no bacteria were isolated. At 48 h post-inoculation, lungs 
were excised and mechanically homogenized in 200 µl ice-cold PBS. 
The lung homogenate was diluted (1:102, 1:104, and 1:105) in PBS, 
plated on blood agar plates using glass beads, and incubated at 37 °C 
overnight. CFUs were counted using ProtoCOL 3HD (SYNBIOSIS, VWR 
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International; Karlskoga, Sweden). All experiments were performed in 
compliance with animal protection laws and approved by the Regional 
Ethical Committee for Animal Experimentation at Lund University, 
Sweden (permit number: 5.8.18–19202/2023).

Statistics

One-way ANOVA test was used for comparisons of SYTOX Green 
signal between the two groups (colistin-susceptible vs. colistin-re-
sistant), with Bonferroni post-test analysis. Two-way ANOVA test was 
used for comparisons of serum survival between the two groups with 
the Bonferroni post-test analysis. Kaplan-Meier curves were used to 
assess survival, and the log-rank test was used to determine statistical 
differences in survival. A Mann-Whitney test was used for the murine 
pneumonia model. The significance (p = 0.005) was calculated between 
colistin-susceptible and colistin-resistant isolates only. A p-value of 
< 0.05 was considered statistically significant. Statistical analyses were 
performed using GraphPad software 10 (Prism, La Jolla, CA).

Results

Pandrug-resistant Klebsiella pneumoniae are isolated from wounded 
individuals in Ukraine

Between February and September 2022, 37 clinical isolates of K. 
pneumoniae were collected from patients with hospital-associated 

infections as described.11 The isolates were tested for susceptibility 
to several antibiotics and their minimum inhibitory concentrations 
(MICs) were determined (Fig. 1A and Supplementary Table S1). 
Bacteria had alarming levels of AMR, ranging from 73% (n = 27) to 
imipenem and 100% (n = 37) to cefotaxime and ceftolozone-tazo-
bactam (Fig. 1B and Supplementary Table S1). A fraction of K. 
pneumoniae isolates (n = 9; 24%) were resistant to colistin, classifying 
them as PDR. Whole genome sequencing (WGS) revealed that the 
bacteria belonged to the following STs: 23 (n = 4), 147 (n = 9), 307 
(n = 6), 395 (n = 17), and 512 (n = 1) (Fig. 1A, Fig. 2, Supplementary 
Table S1). One colistin-resistant isolate was identified as belonging 
to ST147, while eight were categorized under ST395.

Klebsiella pneumoniae harbor numerous virulence factor genes

The WGS revealed the presence of multiple resistance and viru-
lence genes (Table 1, Fig. 2, Supplementary Table S2-S5, and S7), as 
well as a set of plasmids carried by bacteria (Supplementary Table 
S6). The carbapenemase genes blaNDM-1 (n = 15), blaNDM-1 + blaOXA-48 

(n = 13), blaOXA-48 (n = 5), blaNDM-6 (n = 2) and, finally, blaNDM-1 + 
blaKPC-3 (n = 1) were found. The blaNDM and blaOXA-48 genes were 
predominantly associated with ST395 and ST147 (Table 1, Fig. 2). The 
isolates also carried cephalosporin resistance genes blaCTX-M-15 

(n = 29), blaCTX-M-55 (n = 4), blaCTX-M-3 (n = 1) and blaDHA (n = 1). Ad-
ditionally, AMR-associated resistance genes to aminoglycosides, 
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of isolates were determined using the Kleborate-viz. MIC values for colistin are also shown in relation to point mutations in the pmrB and phoP genes.
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fluoroquinolones, sulfonamide, trimethoprim were found in most 
isolates (Supplementary Table S3 and S4).

Interestingly, many isolates carried R256G and M240T mutations 
in the pmrB gene, but most of them did not show colistin resistance. 
Only one resistant ST147 isolate carried another point mutation 
(S85R). Most isolates (n = 8) carrying the E82K mutation in the phoP 
gene displayed colistin resistance (Fig. 2, Supplementary Table S5). 
Notably, isolates (n = 2) with a double mutation (E82K and E57K) in 
the phoP gene were still colistin susceptible. The colistin-resistant 
PDR K. pneumoniae all carried virulence genes rmpA, rmpC, rmpD, 
iucA, and peg-344 (Fig. 2, Supplementary Table S7). In contrast, only 
36% of colistin-susceptible isolates carried rmpA and rmpC, 21% had 
rmpD, 68% carried iucA, and, finally, 61% were equipped with peg- 
344. Virulence genes ybt and iuc encoding yersiniabactin and aero-
bactin, respectively, were prevalent in most isolates (Fig. 2, 
Supplementary Table S7).

Colistin-resistant Klebsiella pneumoniae are resistant to human serum

Another important trait for bacterial virulence is resistance to 
serum killing by the complement system. Complement activation 
results in the formation of the membrane attack complex (MAC), 
which can directly lyse gram-negative bacteria like K. pneumoniae. 
Since bacterial pathogenicity may correlate with serum resistance, 
we incubated K. pneumoniae for 2 h with 30% NHS and the cell death 
indicator, SYTOX Green dye. The cell membranes were completely 
intact in colistin-resistant bacteria exposed to NHS, whereas the 
colistin-susceptible bacteria showed increased staining with SYTOX 
Green (Fig. 3A, Supplementary Fig. S1A-B). Due to the MAC forma-
tion, the antibacterial peptide nisin A caused significantly more 

damage to the colistin-susceptible bacteria by passing through the 
MAC-mediated pores in the outer membrane. The survival of K. 
pneumoniae isolates was restored when the C5 inhibitor (OmCl) was 
added to NHS, indicating that the damage was mediated by MAC. 
After 1 h of incubation in 30% NHS, we also estimated the surviving 
bacteria by counting CFUs (Fig. 3B-C). In this experimental setup, all 
colistin-resistant isolates survived in NHS (Fig. 3B). In contrast, five 
colistin-susceptible isolates (18%) had statistically significantly re-
duced survival upon serum challenge (Fig. 3C).

Colistin-resistant Klebsiella pneumoniae are hypervirulent in Galleria 
mellonella and mouse infection models

Since colistin is one of the last remaining antimicrobial agents 
against K. pneumoniae, a set of colistin-resistant and -susceptible 
isolates were selected for further analysis in animal infection 
models. Galleria mellonella larvae were infected with 8 colistin-re-
sistant and 22 colistin-susceptible isolates belonging to different STs 
and carrying different virulence genes (Supplementary Table S2). 
Larvae infected with colistin-susceptible K. pneumoniae survived 
significantly longer compared to larvae infected with colistin-re-
sistant isolates, both at bacterial concentrations of 105 CFU and 106 

CFU (both p ≤ 0.001) (Fig. 4A-B).
The ultimate test for analyzing the bacterial pathogenicity of 

colistin-resistant K. pneumoniae involves infecting mice. We selected 
8 resistant and 8 susceptible isolates each (Table 2). All of them 
belonged to ST395, except the colistin-susceptible isolate KR6029 
which belonged to ST147. The colistin-resistant K. pneumoniae were 
armed with more virulence factors such as iucA, rmpA, C, and D, and 
peg-344 than colistin-susceptible isolates. Mice were infected with K. 
pneumoniae (2.5 × 106 CFU) for 48 h. Importantly, colistin-resistant 
isolates were significantly more likely to infect the lungs of mice 
(p = 0.005) compared to colistin-susceptible bacteria (Fig. 4C). Taken 
together, colistin-resistant K. pneumoniae displayed an increased 
bacterial pathogenicity compared to colistin-susceptible isolates, as 
assessed by the killing of G. mellonella, and were also more prone to 
infect mice in the pneumonia model.

Discussion

In this study, we aimed to investigate the molecular character-
istics and virulence traits of XDR and PDR K. pneumoniae isolated 
from war victims in Ukraine in 2022. We found that ST147 and ST395 
were dominating among isolates, with most of the isolates carrying 
carbapenemases belonging to the NDM-1 and OXA-48 groups. These 
STs and associated carbapenemases have been reported in multiple 
previous reports on hospital-acquired K. pneumoniae originating 
from Ukraine.21–24 However, we observed a variety of STs and a di-
versity of carbapenemases in our material, suggesting a high pre-
valence of carbapenem-resistance strains in Ukraine rather than a 
few transmission clusters.24 Most of the isolates carried resistance 
genes that are associated with hypervirulence. The colistin-resistant 
K. pneumoniae isolates were highly serum resistant and more viru-
lent in the G. mellonella infection model compared to colistin-sus-
ceptible isolates. A similar pattern was seen in mouse model 
suggesting that PDR K. pneumoniae have maintained their bacterial 
virulence. For meropenem-resistant K. pneumoniae or meropenem 
susceptibility in the I-group, our data indicate the presence of 
multiple lineages exhibiting diverse AMR profiles. However, clonal 
spread within hospitals cannot be excluded, due to the limited 
number of isolates included in this study. Two strains that exhibited 
susceptibility, increased exposure (I) towards meropenem, harbored 
carbapenemases. This also highlights the difficulties in identifying 
patients carrying carbapenemases, apart from the need for infection 
prevention and control measures in suspected cases. Alarmingly, 
most K. pneumoniae isolates show similarly vast characteristics of 

Table 1 
Sequence types and AMR determinants in K. pneumoniae (n = 37). 

ST Isolate Cephalosporinase genes Carbapenemase genes

23 KR6068 blaOXA-1 blaCTX-M-55 blaNDM-6 -
KR6083 blaOXA-1 blaCTX-M-55 - -
KR6085 blaOXA-1 blaCTX-M-55 blaNDM-6 -
KR6159 blaOXA-1 blaCTX-M-55 - blaOXA-48

147 KR6007 blaOXA-1 blaCTX-M-15 blaNDM-1 blaOXA-48

KR6029 - blaCTX-M-15 blaNDM-1 -
KR6047 - blaCTX-M-15 blaNDM-1 -
KR6071 - blaCTX-M-15 blaNDM-1 -
KR6072 - - - blaOXA-48

KR6145 - blaCTX-M-15 blaNDM-1 -
KR6156 - blaCTX-M-15 blaNDM-1 -
KR6162 blaOXA-1 blaCTX-M-15 blaNDM-1 blaOXA-48

KR6166 blaOXA-1 blaCTX-M-15 blaNDM-1 blaOXA-48

307 KR6060 - blaCTX-M-15 blaNDM-1 -
KR6078 - blaCTX-M-15 blaNDM-1 -
KR6079 - blaCTX-M-3 blaNDM-1 -
KR6098 - blaCTX-M-15 blaNDM-1 -
KR6108 - blaCTX-M-15 blaNDM-1 -
KR6122 blaOXA-1 blaCTX-M-15 blaNDM-1 -

395 KR6030 blaOXA-1 blaCTX-M-15 blaNDM-1 blaOXA-48

KR6058 blaOXA-1 blaCTX-M-15 blaNDM-1 blaOXA-48

KR6063 blaOXA-1 blaCTX-M-15 blaNDM-1 blaOXA-48

KR6066 blaOXA-1 blaCTX-M-15 blaNDM-1 -
KR6067 blaOXA-1 blaCTX-M-15 blaNDM-1 -
KR6069 blaOXA-1 blaCTX-M-15 blaNDM-1 blaOXA-48

KR6077 blaOXA-1 blaCTX-M-15 blaNDM-1 blaOXA-48

KR6080 - - blaNDM-1 -
KR6081 blaOXA-1 blaCTX-M-15 blaNDM-1 -
KR6084 blaOXA-1 blaCTX-M-15 - blaOXA-48

KR6131 blaOXA-1 blaCTX-M-15 blaNDM-1 blaOXA-48

KR6135 blaOXA-1 blaCTX-M-15 - blaOXA-48

KR6142 blaOXA-1 blaCTX-M-15 blaNDM-1 blaOXA-48

KR6143 blaOXA-1 blaCTX-M-15 blaNDM-1 blaOXA-48

KR6144 blaOXA-1 blaCTX-M-15 blaNDM-1 blaOXA-48

KR6149 blaOXA-1 blaCTX-M-15 blaNDM-1 blaOXA-48

KR6163 - blaCTX-M-15 - blaOXA-48

512 KR6061 blaDHA - blaNDM-1 blaKPC-3
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hypervirulence. Hypervirulent K. pneumoniae can cause severe, life- 
threatening infections in healthy individuals and can be defined by 
the presence of the genes rmpA, rmpA2, iucA, iroB, and peg-344. These 
genes are typically acquired and mainly expressed via plasmids but 
could also be acquired or mutated chromosomally.25,26 Whether the 
hypervirulent phenotype requires all or a combination of these 
genes remains to be defined. The pathogenicity of hypervirulent K. 

pneumoniae includes optimized capsular function, siderophore 
system, lipopolysaccharides (LPS), outer membrane proteins, and 
efflux pumps.27 Previously, rmpA and rmpA2 have been associated 
with hypermucoviscosity and pathogenicity.28,29 Most of our isolates 
carried at least some of these genes on plasmids, as well as yersi-
niabactin and/or aerobactin. Yersiniabactin is a strong predictor of K. 
pneumoniae infection in contrast to colonization.30 Fifteen out of 37 
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(41%) isolates carried the rmpD gene, which is associated with hy-
permucoviscosity in K. pneumoniae.9 While the siderophore viru-
lence gene iucA was found in 34/37 (92%) of isolates, we did not find 
the siderophore virulence genes entB or ybtS, previously associated 
with the pathogenicity of carbapenem-resistant K. pneumoniae.31,32

We also did not detect any colibactin genes, related to the hy-
permucoid phenotype.18

The G. mellonella infection model has previously been used as an 
infection model to investigate the virulence of K. pneumoniae.33 Our 
results contradict a previous study in which hypervirulent XDR 
isolates exhibited low virulence; however, that study included only 
12 strains in a murine model.34 Another study failed to clearly dif-
ferentiate between hypervirulent and classical K. pneumoniae strains 
in a G. mellonella infection model, whereas the distinction was ac-
curately made in a murine model.35 In our study, most isolates were 
hypervirulent strains, and we observed a statistically significant 
difference between the colistin resistance and the killing of larvae in 
the G. mellonella infection model. This is in accordance with a study 
from Egypt, where carbapenemase-producing K. pneumoniae, pre-
dominantly NDM-1 and OXA-48, produced biofilm with increased 
virulence.36 We further proved the conserved bacterial virulence by 
demonstrating serum resistance in the presence of NHS in addition 
to an acute pneumonia model in mice. Finally, a previously pub-
lished G. mellonella model, using carbapenem-resistant K. pneumo-
niae isolates from patients with ventilator-associated pneumonia 
(VAP), determined that their isolates were also hypervirulent, which 
was further confirmed with in vitro serum resistance tests.37 Taken 
together, our data, supported by several lines of evidence, suggest 
that AMR K. pneumoniae most likely do not lose their capacity to 
cause disease.

Alarmingly, our findings show that war victims in Ukraine are 
affected by multidrug-resistant and hypervirulent K. pneumoniae. 
Moreover, the isolates exhibiting colistin resistance were also more 
virulent, which raises significant concerns, especially considering 
the added challenge of carbapenem resistance. None of the strains 
carried mobile colistin resistance genes; however, many isolates 
were observed to carry chromosomal point mutations in the pmrB 
gene resulting in R256G and M240T. Remarkably, one ST147 isolate 
carrying an additional mutation resulting in S85R presented colistin 
resistance. This point mutation was suggested in the literature to be 
correlated with the resistance to colistin.38 Nonetheless, the pmrB 
mutation seems to be not strongly connected to the resistance as 
most of the bacterial carriers were susceptible to colistin (Fig. 2).39

However, the phoP mutation resulting in E82K seems to be more 
related as all ST395 isolates with single E82K mutation were re-
sistant.40 Notably, two ST395 isolates with double E82K and E75K 
mutations within phoP were susceptible.

This study is limited by a small sample size, raising uncertainty 
about whether increased virulence truly indicates a hypervirulent 
phenotype of K. pneumoniae in a clinical context. Additional studies, 
ideally prospective, analyzing K. pneumoniae from sepsis and in-
cluding patient outcomes, is crucial. Due to the ongoing conflict in 

Ukraine, clinical data on therapy and outcomes are not fully acces-
sible. Investigating the link between colistin resistance and in-
creased virulence could involve reversing key mutations potentially 
related to colistin resistance followed by evaluation of pathogenesis 
in animal models. This will be the impetus for future investigations.

In conclusion, carbapenem-resistant K. pneumoniae isolated from 
Ukrainian war victims were hypervirulent, and among them, the 
most multidrug-resistant were colistin-resistant isolates, which also 
demonstrated the highest bacterial virulence and pathogenicity.
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