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A B S T R A C T   

Problem of scorpion envenomation becomes more alarming each year. Main effects of scorpion venom are 
commonly believed to be related to its neurotoxic properties, yet severe symptoms may also be developed due to 
the uncontrolled enzymatic activity and formation of various bioactive molecules, including middle-mass mol
ecules (MMMs). MMMs are considered as endogenous intoxication markers, their presence may indicate multiple 
organ failure. Scorpions, belong to the Leiurus macroctenus species, are very dangerous, nevertheless, effects of 
their venom on protein and peptide composition within the tissues remains unclear. In this work we have focused 
the attention on changes in protein and MMM levels and peptide composition in various organs during Leiurus 
macroctenus envenomation. The results revealed a decrease in protein level during envenomation as well as a 
significant increment of MMM210 and MMM254 levels in all assessed organs. Quantitative and qualitative com
positions of various protein and peptide factions were continually changing. All of this may suggest that Leiurus 
macroctenus sting causes considerable destruction of cell microenvironment across all essential organs, providing 
systemic envenomation. In addition, MMM level increment may indicate endogenous intoxication development. 
Peptides, formed during envenomation, may possess various bioactive properties, analysis of which constitutes 
an area of further studies.   

1. Introduction 

Scorpion envenomation reports number increases from year to year. 
Uncontrolled expansion of harmful scorpion species as well as urban 
area enlargement provide more frequent scorpion encountering cases 
[2,41]. There are about 1 million scorpion envenomation and nearly 
3250 deaths after scorpion sting reports each year [11]. 

It was recently reported that scorpion sting provides a variety of 
symptoms the most severe of which are cardio-respiratory dysfunctions 

[37], hemorrhage [33] and even local tissue necrosis [18]. It’s esti
mated, that severity and systematicity of scorpion envenomation are 
closely related to the venom neurotoxicity effects, namely the neuronal 
excitation and catecholamine release [17,25,4]. However, the severe 
systemic symptoms development may be also associated with increased 
enzymatic activity within the tissues, which also activates inflammation 
response [22,27]. 

Scorpion venoms are mostly comprised of inorganic salts, nucleo
tides, amino acids, lipids, enzymes and peptides [29]. Enzymes, present 
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in venom, enhance envenomation process and venom spreading via 
extracellular matrix destruction [43]. Increased enzymatic activity 
during envenomation leads to enhanced tissue permeability and provide 
systemic inflammatory response, since venom toxins can easily spread 
among all organs and tissues [30]. At the same time, enzymatic bio
macromolecule degradation and resulting inflammation development 
contribute to middle-mass molecules (MMMs) formation [14]. 
Middle-mass molecules are mixture of molecules with masses don’t 
exceed 5,000 Da. To MMMs can be referred different tissue destruction 
products, lipid peroxide compounds and oligopeptides [7]. In turn, 
MMMs (mostly peptides) are considered as a biochemical marker of 
multiple organ failure [23] and endogenous intoxication syndrome [28, 
31]. Taking into account, that scorpion sting usually provides systemic 
envenoming [1,6], MMMs levels may indicate multiple tissue destruc
tion and systemic inflammation development during envenomation. 

Scorpions belong to the Leiurus genus (also known as “deathstalker”) 
are well known because of their dangerous venom [17,18], at the same 
time their venom components possess biomedical properties, attracting 
scientists’ attention [3,4,12,38]. Leiurus macroctenus is a recently iden
tified species [20], that differ from other Leiurus species by morpho
logical and morphometric parameters [5]. 

Unfortunately, little is known about the effect of Leiurus macroctenus 
envenomation on the protein profile in different organs, as well as no 
information about changes of MMMs levels can be found. This work 
aims to determine the protein profile and MMMs content in various 
organs during Leiurus macroctenus envenomation. In order to examine 
given characters, protein content quantification, electrophoretic protein 
profiling, MMM level analysis and examination of middle-mass peptide 
qualitative composition was performed. 

2. Materials and methods 

2.1. Scorpion collection and maintenance 

Ten mature Leiurus macroctenus specimens, used in this study, were 
collected in the wild in Oman, identified by Mark Stockmann and kept in 
Ibbenbüren private collection (Germany). 

Scorpions were kept separately in transparent plastic boxes (10×5x5 
cm) filled with sand (Exo Terra "Desert Sand") by 1 cm. Bowls with 
weekly refilled distilled water served as a water source and were placed 
in the center of each container. All animal containers were placed under 
normal conditions (25 ◦C–35 ◦C, 50–60 % humidity, natural lighting 
regime). Appropriate aeration conditions were reached by holes in the 
boxes. One Shelfordella lateralis cockroach were fed to each scorpion 
once a week, cockroach was taken away in 2 days after feeding in case of 
food refusal. Boxes were cleaned of cockroach remnants and other pol
lutions once a month. 

2.2. Venom collection 

Venom collection was performed using Ozkan and Filazi [26], 
modified by Yaqoob et al. [42]. After appropriate scorpion fixation, 
electrode was pointed to cephalotorax and telson. To the base of telson 
for 5 s was applied electric current with intensity of 24 V, while telson’s 
other edge was pointed to the sample phial. Electrode-scorpion contact 
number varied from 1 to 10, depending on venom yield. Venom milking 
procedure was performed every 2 weeks. The collected venom was 
centrifuged and stored at − 20◦C. 

2.3. Venom injection and organ homogenization 

Experimental group of 60 albino male rats (180 g ± 3 g) were 
injected intramuscularly with 0.5 ml venom solution (LD50), previously 
dissolved in saline solution (0.9 %). Control group, consist of 13 rats, 
was injected with 0.5 ml saline solution (0.9 %) alone. 

Laboratory male rats were raised in the vivarium of the Educational 

and Scientific Center "Institute of Biology and Medicine" of Taras 
Shevchenko Kyiv National University. Rats were kept on a standard diet 
in the conditions of an accredited vivarium in accordance with the 
"Standard Rules for Organizing, Equipping and Maintaining Experi
mental Biological Clinics (vivariums)". The following conditions were 
observed in the room for keeping animals: temperature - 20–24 ◦C, 
humidity - 30–70 %, 12-h light day. Rats were fed standard food for 
laboratory animals. Rats that were selected for the experiment were 
subjected to a veterinary examination, after which they were divided 
into groups, weighed, numbered and marked accordingly. The rats were 
euthanized using the method of carbon dioxide inhalation. The flow rate 
for 60 % volume displacement per minute was 12.4 liters/min for a cage 
size of 9" x 17.5" x 8" (W x L x H). Animal execution was followed by 
organ isolation and homogenization at 1–4 ◦С. Homogenization was 
performed using 50 mM Tris-HCl (pH 7.4) buffer with 140 mM NaCl and 
1 mM EDTA. Volume of buffer used (in grams) was five times higher 
than isolated organs’ mass. Obtained crude homogenate centrifugation 
at 600 g for 15 min with further supernatant collection and its centri
fugation at 15,000 g for 15 min were performed to get rid of nuclear and 
mitochondrial factions. Homogenate aliquots were frozen using liquid 
nitrogen. Protein contents were measured using Bradford [8]. 

2.4. Eletrophoretic profiling 

Electrophoretic separation of protein factions between 10 and 150 
kDa was performed in presence of SDS using Laemmli [19]. Concen
trations of polyacrylamide in stacking and resolving gels were 4 % and 
10 % respectively. Electrophoresis was performed with vertical elec
trophoresis system (Bio-Rad, USA) by applying electric current of 19 mA 
and 36 mA to stacking and resolving gels respectively. After separation, 
protein bands were fixing for 10 min by a mixture of 7.5 % acetic acid 
and 37.5 % isopropanol. Gels were staining on automatic shaker for 15 
min by a mixture of 2.5 % Coomassie Brilliant Blue G-250, 10 % ethanol, 
10 % acetic acid and 15 % isopropanol. Excess dye was removed from 
gels by boiling in 2–8 % acetic acid. 

2.5. Middle-mass molecules content determination 

Faction of MMMs was separated using a method, proposed by 
Nykolaychyk et al. [24]. The whole procedure was performed on ice, 
with 15 min breaks between each stage. Tissue homogenate samples 
were added to equal volumes of 1.2 М HClO4 and centifugated for 15 
min at 10,000 rpm. To collected supernatant was added 96 % ethanol in 
ratio of 1:5, then, mixture was centrifugated for 15 min at 10,000 rpm. 
Optical density of obtained samples was measured at 210 and 254 nm. 

2.6. Size-exclusion chromatography analysis 

Peptide fractions separation and mass determination was performed 
using Sephadex G15 column (Bio-Rad, USA). Column pre-equilibration 
was achieved with 0.05 M Tris-HCl (pH 7.4) containing 0.13 M NaCl. 
Samples were loaded at a flow rate 30 ml/hour. Mass of peptides were 
determined by calibration curve, calculated using standard mixture 
containing lysozyme (14.3 kDa), insulin (5.7 kDa), and vitamin B12 
(1.35 kDa). 

2.7. Statistical analysis of results 

Values, present in tables are expressed as mean ± SEM. The signifi
cance of differences was determined using one-way analysis of variances 
(ANOVA) performed in GraphPad Prism 9. Differences between groups 
were considered statistically significant when *p < 0.05. 

2.8. Ethical approval 

All experiments on animals were performed in the compliance with 
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international principles of the European Convention for the protection 
of vertebrate animals used for experimental and other scientific pur
poses (Strasbourg, 1986). The study was approved by the Ethical Com
mittee of Taras Shevchenko National University of Kyiv (protocol N◦2 
approved 19.08.2021). 

3. Results 

3.1. Protein content quantification 

Results of the protein level assay showed a prominent decrease in 
total protein level in all assessed organs being envenomated (Table 1). 
The peak of the protein level decrease was observed in 24 h after venom 
injection. In period from 24th hour to 72nd hour protein levels were 
increased almost to the control values. Brain and liver protein contents 
appeared to decrease the most – by 16.4 % and 14.7 % respectively. 
Protein levels in kidneys, spleen, and intestine have been decreased by 
6.5 %, 5.7 % and 5 % respectively; heart and lungs proteins’ contents 
decreased the least – by 3.5 % and 2.9 % respectively. 

3.2. Electrophoretic profiling 

In order to evaluate the distribution of protein factions during en
venomation, electrophoresis was performed (Table 2). The results 
showed the alterations in ratio between different protein factions’ levels 
during envenomation and absolute absence of proteins with molecular 
weight exceeding 150 kDa before and after venom injection. 

The levels of a given protein factions were continuously changing. 
Relative contents of protein faction with molecular weight 100–150 kDa 
were decreased in liver, brain, intestine almost throughout the whole 
envenomation period, while in spleen this faction levels were increasing, 
comparing to the control. At the same time in the lungs, this faction, 
being absent before envenomation, was observed during first 24 h after 
venom injection. On the other side, we have observed the complete 
absence of this protein faction in kidneys from 3rd to 24th hour of 
envenomation. 

Relative content of proteins between 67 and 100 kDa during en
venomation was increased in heart, liver and lungs, comparing to the 
control, furthermore, in spleen and intestine this fraction was absent in 
control group, but observed during 1–24 h and 3–72 h of envenomation 
respectively. In the brain changes of this faction’s level were inconstant 
– it increased in 1 and 24 h after envenomation, but decreased in 3 h and 
72 h, comparing to the control. In the kidneys relative content of this 
faction was majorly decreased. 

During envenomation the vast majority of assessed organs had an 
increment of 35–67 kDa protein relative level, namely heart, liver, in
testine and kidneys. In contrast, in spleen, brain and lungs this faction’s 
levels were decreased. 

Also, it was shown, that relative content of proteins between 10 and 
35 kDa were predominantly increased in all assessed organs, only in 
heart this indicator was decreased, comparing to the control. 

Envenomation also caused the prominent decrement of < 10 kDa 
protein relative content in the absolute majority of all assessed organs. 
Only in brain this faction, being absent in control group, increased its 
level during 3–72 h after venom injection. 

3.3. MMM content determination 

In order to study the changes of MMM contents during envenom
ation, MMM faction separation and its further spectrometry analysis was 
performed. The results of spectrometry measurement at 210 nm 
(Table 3) and 254 nm (Table 4) showed a significant rise of MMM levels 
by 53 % and 64 % respectively, compared to the control. It is noticeable 
that the increment rates were nearly the same in all assessed organs, and 
the peak of MMM level was observed in 24 h after venom injection. 

Table 1 
The protein level changes during envenomation.   

Control 1 h 3 h 24 h 72 h  
mg/g of tissue 

Heart 66.56 ±
2.75 

65.43 ±
1.24 

64.37 ±
0.95 

64.22 ±
0.67 

65.15 ±
0.76 

Spleen 102.15 ±
1.34 

98.34 ±
0.98* 

97.12 ±
1.13* 

96.36 ±
0.94* 

100.52 ±
0.94* 

Liver 112.23 ±
1.87 

98.62 ±
1.25* 

97.45 ±
0.56* 

95.81 ±
0.76* 

109.35 ±
0.46* 

Brain 26.8 ±
2.17 

23.8 ±
1.11* 

23.1 ±
0.95* 

22.4 ±
0.34* 

25.7 ± 0.33 

Lungs 65.01 ±
2.56 

65.14 ±
1.15 

64.21 ±
1.11 

63.13 ±
0.68 

64.85 ±
0.63 

Intestine 66.19 ±
1.74 

65.21 ±
0.89 

63.72 ±
0.46* 

62.93 ±
0.34* 

65.34 ±
0.57 

Kidneys 90.01 ±
1.68 

87.05 ±
1.23* 

86.12 ±
0.95* 

84.21 ±
0.75* 

88.75 ±
0.84 

Protein levels in rat organ homogenates were measured via Bradford assay. BSA 
was used to prepare a calibration curve. Results are presented as mean ± SEM (n 
= 5). * p < 0.05 vs. Control 

Table 2 
Protein profile of envenomated tissues.    

Control 1 h 3 h 24 h 72 h 
MW, kDa Relative content, % 

Heart ≥150  0  0  0  0  0 
150–100  0  0  0  0  0 
100–67  5.69  12.56  15.84  13.44  9.73 
67–35  13.26  27.84  28.99  21.52  17.88 
35–10  49.69  39.32  35.88  34.21  43.21 
≤10  31.35  20.28  19.29  30.83  29.18 

Spleen ≥150  0  0  0  0  0 
150–100  5.29  9.15  8.75  8.12  6.73 
100–67  0  17.72  24.32  23.77  0 
67–35  23.42  21.84  19.77  15.67  20.74 
35–10  31.6  46.73  35.28  30.95  29.56 
≤10  39.68  4.56  11.88  21.49  42.97 

Liver ≥150  0  0  0  0  0 
150–100  4.27  3.56  2.77  3.42  2.99 
100–67  18.86  21.89  29.54  34.23  23.74 
67–35  28.02  42.17  36.54  29.56  30.89 
35–10  29.25  32.38  29.72  31.42  32.64 
≤10  19.61  0  1.43  1.34  9.74 

Brain ≥150  0  0  0  0  0 
150–100  2.02  2.34  1.14  0.74  1.64 
100–67  15.32  20.31  11.63  17.83  14.73 
67–35  40.45  35.62  32.17  11.18  32.17 
35–10  42.31  41.73  35.22  44.78  48.88 
≤10  0  0  19.84  25.47  2.56 

Lungs ≥150  0  0  0  0  0 
150–100  0  8.9  13.41  16.88  0 
100–67  19.57  17.53  28.58  27.53  19.33 
67–35  39.66  16.82  33.74  25.69  35.19 
35–10  17.35  18.84  16.33  23.36  21.48 
≤10  23.43  8.35  7.89  6.54  24.0 

Intestine ≥150  0  0  0  0  0 
150–100  20.12  14.78  12.65  11.87  27.92 
100–67  0  0  3.34  2.64  1.74 
67–35  8.85  19.54  23.99  27.83  14.73 
35–10  29.39  38.43  47.65  48.93  25.85 
≤10  41.64  27.25  12.37  8.73  29.76 

Kidneys ≥150  0  0  0  0  0 
150–100  16.65  10.14  0  0  14.86 
100–67  9.46  0  9.86  1.76  7.73 
67–35  22.12  27.89  36.13  40.11  19.56 
35–10  34.15  49.78  50.46  56.83  29.73 
≤10  17.62  12.19  3.55  1.32  28.12  

Protein profiles of the tissues were analyzed by electrophoresis in 10 % poly
acrylamide gel. The relative content of each protein fractions was evaluated 
using TotalLab - CLIQS Gel Image Analysis Software and expressed in %. 
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3.4. Qualitative composition of MMM peptide component 

The evaluation of molecular weight of peptides, present in MMM 
faction was achieved by size exclusion chromatography. The results 
showed dynamic changes in middle-mass peptide qualitative composi
tion throughout the envenomation period. Molecular weights of all 
identified during envenomation peptides are summarized in Table 5. 

It was found out, that envenomation had no impact on peptide 
qualitative composition in heart, brain and lungs, nonetheless, those 
changes were observed in other organs. In the spleen and kidneys 4 main 
peptide factions, observed in control group, were replaced with different 
peptides during 1–24 h of envenomation, which in turn were replaced by 
peptides with completely different weight. Also, envenomation caused 
the appearance of additional peptide factions – in spleen during 3–24 h 
of envenomation and in kidneys during 1–24 h of envenomation. 

In liver and intestine changes have been also occurred. In these or
gans envenomation led to stable changes of peptide qualitative 
composition, such as replacement of those peptides, being present in 

control, with another one. Additionally, envenomation provided the 
appearance of 2 new peptide factions in liver and 1 faction in intestine 
from 3rd hour after venom injection. 

4. Discussion 

4.1. Protein content changes 

We have observed the prominent decrease in protein level during 
envenomation in all assessed organs. It can be explained by the activa
tion of proteases, namely serine proteases and metalloproteases, present 
in many spider, snake and scorpion venoms [9]. Furthermore, venom 
components trigger the activation and overexpression of matrix metal
loptroteases (MMPs), which, in turn, enhance the damage dealt to 
extracellular matrix (ECM) [36]. Also, protein level changes occurred in 
all tissues, suggesting that Leiurus macroctenus sting may provide sys
temic envenoming, which is common for scorpions of Leiurus genus 
[18]. 

4.2. Examination of protein profile 

Evaluation of the changes in protein profile during envenomation 
showed the alterations of ratio between different protein factions in all 
assessed organs. Levels of protein factions with molecular weight 10–35 
kDa, 35–67 kDa, 67–100 kDa and 100–150 kDa had a tendency to rise, 
while contents of < 10 kDa proteins were decreasing. It can be explained 
as a consequence of ECM components degradation provided by venom 
proteases and MMPs. It means that during envenomation these factions 
to some extent were comprised of the larger molecules’ proteolysis 
products. To large molecules we refer laminin, collagens, elastin, 

Table 3 
The dynamics of MMM210 content in tissues during envenomation.   

Control 1 h 3 h 24 h 72 h  
rel. units/g of tissue 

Heart 10.58 ±
0.09 

12.75 ±
0.05* 

13.56 ±
0.06 

16.28 ±
0.03 

15.33 ±
0.03* 

Spleen 18.02 ±
0.46 

21.71 ±
0.04* 

23.10 ±
0.07* 

27.72 ±
0.02* 

26.12 ±
0.03* 

Liver 11.05 ±
0.97 

13.31 ±
0.09* 

14.17 ±
0.05* 

17.00 ±
0.03* 

16.01 ±
0.02* 

Brain 4.15 ±
0.87 

5.00 ±
0.11* 

5.32 ±
0.05* 

6.38 ±
0.02* 

6.01 ±
0.01* 

Lungs 11.20 ±
1.17 

13.49 ±
0.84* 

14.36 ±
0.03* 

17.23 ±
0.01* 

16.23 ±
0.04* 

Intestine 19.33 ±
0.13 

23.29 ±
0.56* 

24.78 ±
0.07* 

29.74 ±
0.05* 

28.01 ±
0.03* 

Kidneys 18.89 ±
1.92 

22.76 ±
0.24* 

24.22 ±
0.08* 

29.06 ±
0.04* 

27.38 ±
0.05* 

The fractions of middle-mass molecules were isolated from rat organ homoge
nates by sequential precipitation of proteins and peptides with HCLO4 and 
ethanol at a final concentration of 0.6 M and 80 %, respectively. The level of the 
peptides in the MMM fraction was examined spectrophotometrically at a 
wavelength of 210 nm and expressed as relative units per gram of tissue. Data is 
presented as mean ± SEM (n = 5). * p < 0.05 vs. Control 

Table 4 
The dynamics of MMM254 content in tissues during envenomation.   

Control 1 h 3 h 24 h 72 h  
rel. units/g of tissue 

Heart 1.00 ±
0.01 

1.19 ±
0.01* 

1.35 ±
0.01* 

1.64 ±
0.01* 

1.49 ±
0.01* 

Spleen 0.44 ±
0.07 

0.52 ±
0.02 

0.59 ±
0.01* 

0.72 ±
0.01* 

0.66 ±
0.01* 

Liver 0.53 ±
0.03 

0.63 ±
0.02* 

0.72 ±
0.01* 

0.87 ±
0.01* 

0.79 ±
0.02* 

Brain 0.95 ±
0.20 

1.13 ±
0.03 

1.28 ±
0.02* 

1.56 ±
0.02* 

1.42 ±
0.02* 

Lungs 0.85 ±
0.08 

1.01 ±
0.01* 

1.15 ±
0.03* 

1.39 ±
0.01* 

1.27 ±
0.01* 

Intestine 3.54 ±
0.76 

4.21 ±
0.01* 

4.78 ±
0.03* 

5.80 ±
0.01* 

5.28 ±
0.02* 

Kidneys 4.82 ±
0.85 

5.74 ±
0.01 

6.51 ±
0.02* 

7.90 ±
0.02* 

7.19 ±
0.02* 

The fractions of middle-mass molecules were isolated from rat organ homoge
nates by sequential precipitation of proteins and peptides with HCLO4 and 
ethanol at a final concentration of 0.6 M and 80 %, resp ectively. The level of the 
non-aromatic sulfur-containing molecules, as well as purine bases and free nu
cleotides in the MMM fraction, was examined spectrophotometrically at a 
wavelength of 254 nm and expressed as relative units per gram of tissue. Data is 
presented as mean ± SEM (n = 5). * p < 0.05 vs. Control 

Table 5 
Peptide composition during envenomation.    

Control 1 h 3 h 24 h 72 h 
Faction N◦ Molecular weight, Da 

Heart  1  1611.96  1611.96  1611.96  1611.96  1611.96  
2  1163.87  1163.87  1163.87  1163.87  1163.87  
3  1089.68  1089.68  1089.68  1089.68  1089.68  
4  827.53  827.53  827.53  827.53  827.53 

Spleen  1  2114.64  2169.34  2169.34  2169.34  2122.32  
2  1815.02  1871.82  1871.82  1871.82  1843.51  
3  1306.51  1310.22  1310.22  1310.22  1308.33  
4  821.76  1069.87  1069.87  1069.87  834.11  
5      799.52  799.52   

Liver  1  1986.95  1910.47  1910.47  1910.47  1910.47  
2  1378.18  1307.28  1307.28  1307.28  1307.28  
3  1107.39  1067.66  1067.66  1067.66  1067.66  
4    1026.12  1026.12  1026.12  1026.12  
5    798.47  798.47  798.47  798.47 

Brain  1  1340.62  1340.62  1340.62  1340.62  1340.62  
2  1252.87  1252.87  1252.87  1252.87  1252.87  
3  1020.38  1020.38  1020.38  1020.38  1020.38 

Lungs  1  2147.44  2147.44  2147.44  2147.44  2147.44  
2  1781.80  1781.80  1781.80  1781.80  1781.80  
3  1308.59  1308.59  1308.59  1308.59  1308.59  
4  827.53  827.53  827.53  827.53  827.53 

Intestine  1  2355.36  2239.77  2239.77  2239.77  2239.77  
2  1992.65  1751.49  1751.49  1751.49  1751.49  
3  1407.09  1155.24  1155.24  1155.24  1155.24  
4  820.21  989.43  989.43  989.43  989.43  
5    807.43  807.43  807.43  807.43 

Kidneys  1  2262.04  2345.81  2345.81  2345.81  2302.34  
2  1489.97  1584.26  1584.26  1584.26  1513.45  
3  1209.45  1265.21  1265.21  1265.21  1232.08  
4  1121.76  978.82  978.82  978.82  1012.44  
5    852.13  855.45  854.23   

The peptide composition of MMM fraction was analyzed by size-exclusion 
chromatography on Sephadex G15 column. The molecular weight of the pep
tides was calculated based on a calibration mixture containing lysozyme (14.3 
kDa), insulin (5.7 kDa) and vitamin B12 (1.35 kDa). 
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fibronectin and other ECM components that exceed 200–250 kDa and 
cannot be observed by electrophoresis method we used. It was previ
ously reported, that some snake [15,16] and spider [39] venoms can 
cause ECM degradation and cleavage of its components to numerous 
fragments with different mass, since such molecules have a huge amount 
of cleavage sites. Hence, envenomation in our study led to similar effect 
and obtained increments of the high-mass factions levels are nothing 
else than a result of matrix proteins’ proteolysis. In contrast, relative 
contents of < 10 kDa proteins weren’t increasing, which can be 
explained by electrophoresis resolution limitation. We assume, that the 
level of proteins and peptides with mass < 10 kDa might be rising, since 
ECM degradation should have produced a great amount of smaller 
fragments, but they couldn’t be detected via used electrophoresis 
method. 

The potential consequences of ECM proteins’ degradation could be 
severe. Under normal conditions ECM components degradation is a 
common process of ECM turnover [21]. These events are mostly pro
vided by MMPs, and the latters’ activity is strictly regulated by their 
inhibitors [40]. 

4.3. MMM content during envenomation 

We have shown that Leiurus macroctenus envenomation affects MMM 
levels. The peptide component level, measured at 210 nm, as well as 
non-peptide MMM fraction content, measured at 254 nm, appeared to 
rise throughout the envenomation period with a peak in 24 h. Taking 
into account that major protein level decrement was similarly observed 
in 24 h after venom injection, we may assume that this period of en
venomation is the most destructive for cell microenveironment. 

The changes in MMM levels are usually associated with intoxication 
processes and protein metabolism disorders [13,28]. The variety of 
molecules which may be involved in autointoxication and can be 
reffered to MMM is enormous. It includes molecules of normal meta
bolism, which are present in nonphysiological concentrations; activated 
zymogens; products of impaired metabolism; products of protein 
degradation, biogenic amines and many others. The formation of these 
molecules is mostly related to insufficient micro- and macrocirculation 
as well as to oxygen transport disruption in tissues. The mechanisms of 
non-peptide MMMs’ toxicity differ depending on their origin and 
biochemical properties, yet the obvious reason of their harmful effects 
lies in their nonphysiological concentrations. One of the most prevalent 
effect of peptide MMM fraction is cell membrane toxicity. Nevertheless, 
many peptides (including the protein degradation products) also possess 
bioactive properties, thus these molecules can imitate hormones, cyto
kines, neurotransmitters, affecting mitochondrial respriration, DNA and 
RNA synthesis, glucose metabolism etc. [32]. In addition, increment of 
MMM levels also may indicate renal dysfunction, since in normal con
ditions MMMs are metabolized and excreted by kidneys [10]. Taking 
into account the MMM levels changes in all assessed organs of enve
nomated rats, we assume that Leiurus macroctenus sting might cause 
systemic endogenous intoxication. 

4.4. Qualitative composition of MMM peptide component 

The results of size exclusion chromatography of MMMs showed 
presence of new peptide factions during envenomation with mass be
tween 799 Da and 2345 Da. In heart, brain and lungs venom had no 
impact on peptide qualitative composition, while in other organs the 
changes were significant. Envenomation led to appearance of 
completely new peptides, not typical for non-poisoned tissues. Disap
pearance of factions, being present before venom injection, can be 
explained by continual proteolytic activity and destruction of those 
peptides. At the same time, the whole new peptide factions that 
appeared during envenomation are products of larger proteins’ proteo
lytic degradation. 

In spite of peptide mass evaluation, their potential biological activity 

remains unrevealed. The properties of the proteolytic ECM degradation 
products, including MMMs, are unpredictable, since some of them may 
regulate MMP activity, inflammation development and angiogenesis 
induction [34], while others may mitigate enzyme activity, disrupt ion 
transport, suppress the immune system [35]. Hence, identification and 
bioactive properties characterization of found peptide factions consti
tute an area of further studies. 

In sum, Leiurus macroctenus venom promotes significant alterations 
in protein quantitative and qualitative composition in most vital organs. 
Examination of protein contents showed a considerable decrement of 
protein levels in all assessed organs, mostly in brain (by 16.4 %) and 
liver (by 14.7 %). As it turned out, envenomation led to prominent 
changes in protein composition, relative content of proteins between 10 
and 150 kDa, which were assumed as ECM components’ degradation 
products, was predominantly increasing. Moreover, MMM level assess
ment showed a prominent increase in MMM210 level by 53 %, in 
MMM254 level by 64 %. The most significant changes were observed in 
24 h after venom injection, suggesting that this period of envenomation 
may be the most destructive and dangerous. In addition, evaluation of 
peptide quantitative composition showed that some factions with mass 
between 799 Da and 2345 Da, being absent in control group, appeared 
during envenomation. These peptides, as well as other ECM degradation 
products may be harmful for organism, yet their potential bioactive 
properties analysis create a direction for future studies. 
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