

International Science Group

ISG-KONF.COM

XI

**INTERNATIONAL SCIENTIFIC
AND PRACTICAL CONFERENCE
"CURRENT ISSUES OF GLOBAL ECOLOGY AND
ENVIRONMENTAL MANAGEMENT"**

Krakow, Poland

March 18-21, 2025

ISBN 979-8-89692-729-7

DOI 10.46299/ISG.2025.1.11

CURRENT ISSUES OF GLOBAL ECOLOGY AND ENVIRONMENTAL MANAGEMENT

Proceedings of the XI International Scientific and Practical Conference

Krakow, Poland
March 18 – 21, 2025

LIMITS OF THE PERCENTILE RANGE OF CEPHALOMETRIC PARAMETERS OF THE UPPER AND LOWER JAWS ACCORDING TO THE COGS METHOD IN UKRAINIAN YOUNG MEN AND YOUNG WOMEN WITH DIFFERENT TYPES OF FACES

Nesterenko Ye.

Aspirant

National Pirogov Memorial Medical University, Vinnytsya, Ukraine

Developmental anomalies of the dentofacial system are an important problem in modern orthodontics, as a significant proportion of patients require specialized treatment to correct morphological and functional disorders. Studies by Aldhorae K. A. et al. [1] showed that among patients of orthodontic clinics, the prevalence of anomalies of the dentition and occlusion is about 34 %, which requires a detailed approach to diagnosis and treatment planning. At the same time, the economic aspects of treating such conditions are a significant factor for the health care system, since orthodontic and surgical interventions require significant resources. As shown in the study by Niemi P. et al. [2], the average cost of orthodontic-surgical treatment with mandibular advancement can reach more than 10,000 euros, and the average duration of therapy is 34 months. Taking into account anthropometric differences is critically important for establishing accurate reference values and forming personalized approaches to the treatment of orthodontic patients. The study by Marchenko A. V. et al. [3] confirm that there is a close relationship between the linear dimensions of the jaws and the morphological type of the face, which must be taken into account when determining the optimal parameters of the dental arch. That is why the study of the percentile range of cephalometric parameters of the upper and lower jaws in young men (YM) and young women (YW) with different types of faces will contribute to the improvement of diagnostic approaches and increase the effectiveness of orthodontic treatment.

Cephalometric analysis of lateral teleradiographs of 46 YM and 72 YW with physiological occlusion was performed according to the COGS method [4] in the OnyxCeph^{3TM} software, version 3DPro, Image Instruments GmbH, Germany.

For the convenience of clinical use of a large number of metric characteristics used in the COGS method, we used the distribution of teleradiographic indicators proposed by Dmitriev M. O. [5, 6, 7], according to which the indicators of the dentofacial system that are in the process of growth, as well as in individuals with a formed bone skeleton, in whom it is possible to change the width, length, angles and position of the upper and lower jaws with the help of orthognathic surgery, belong to the second group (Fig. 1, 2).

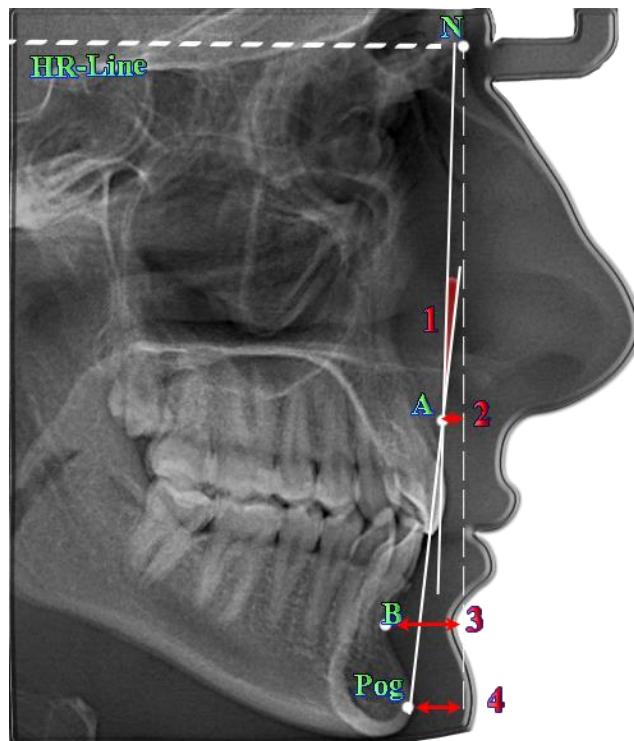


Figure 1. The main cephalometric points and measurements included in the second group of indicators of the COGS method. 1 – N-A-Pog angle; 2 – N-A distance; 3 – N-B distance; 4 – N-Pog distance.

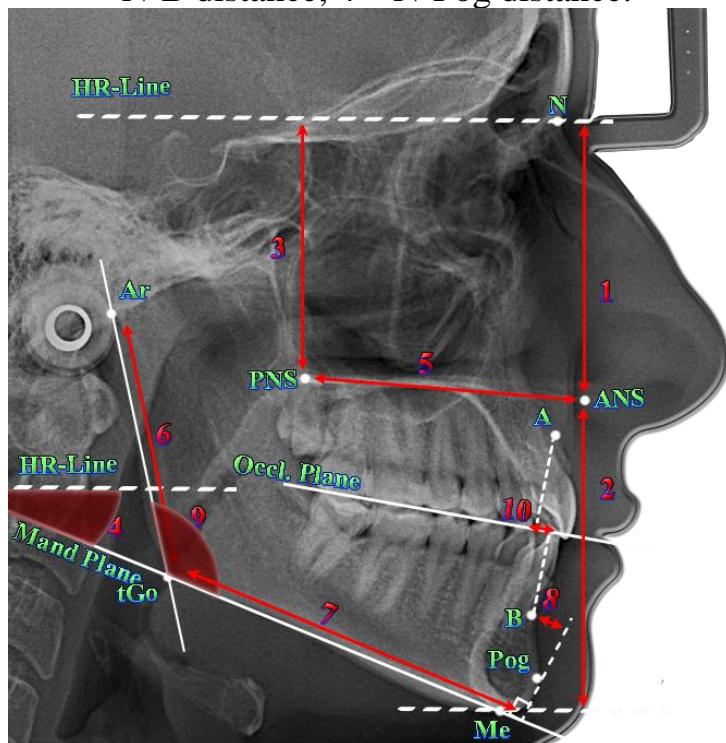


Figure 2. The main cephalometric points and measurements included in the second group of indicators of the COGS method. 1 – N-ANS distance; 2 – ANS-Me distance; 3 – PNS-N distance; 4 – MP-HP angle; 5 – ANS-PNS distance; 6 – Ar-Go distance; 7 – Go-Pog distance; 8 – B-Pog distance; 9 – Ar-Go-Gn angle; 10 – A-B distance.

The determination of the facial type was carried out according to the values of the Garson morphological index [8].

The limits of the percentile range of the obtained indicators were determined in the licensed package “Statistica 6.0”.

As a result of the conducted studies in YM and YW with orthognathic bite with different types of faces, the limits of the percentile range of the magnitude of linear and angular measurements included in the second group of indicators according to the COGS method were established:

the magnitude of the N-A-Pog angle – in YM and YW with a very wide face type, respectively $2.9 - 5.8^\circ$ and $-4.5 - 1.3^\circ$; in YM and YW with a wide face type, respectively $-3.2 - 5.5^\circ$ and $0.2 - 5.7^\circ$; in YM and YW with an average face type, respectively $-2.3 - 6.1^\circ$ and $-0.1 - 4.7^\circ$; in YM and YW with a narrow face type, respectively $-4.6 - 1.6^\circ$ and $1.1 - 6.8^\circ$;

the value of the N-A distance – in YM and YW with a very wide face type, respectively $0.1 - 4.8$ mm and $-2.3 - 0.7$ mm; in YM and YW with a wide face type, respectively $-2.5 - 3.2$ mm and $-3.3 - 1.1$ mm; in YM and YW with an average face type, respectively $-3.7 - 1.9$ mm and $-4.2 - 1.9$ mm; in YM and YW with a narrow face type, respectively $-3.4 - 1.1$ mm and $-3.2 - 2.1$ mm;

the value of the N-B distance – in YM and YW with a very wide face type, respectively $-1.2 - 1.9$ mm and $-5.1 - 0.1$ mm; in YM and YW with a wide face type, respectively $-9.2 - 2.8$ mm and $-9.7 - 2.9$ mm; in YM and YW with an average face type, respectively $-9.0 - 0.1$ mm and $-10.8 - 5.7$ mm; in YM and YW with a narrow face type, respectively $-7.0 - 0.1$ mm and $-8.8 - 3.2$ mm;

the value of the N-Pog distance – in YM and YW with a very wide face type, respectively $2.0 - 5.1$ mm and $-3.3 - 2.5$ mm; in YM and YW with a wide face type, respectively $-7.2 - 4.1$ mm and $-9.4 - 0.5$ mm; in YM and YW with an average face type, respectively $-7.5 - 2.1$ mm and $-11.8 - 3.5$ mm; in YM and YW with a narrow face type, respectively $-4.6 - 5.5$ mm and $-8.4 - 1.7$ mm;

the value of the N-ANS distance – in YM and YW with a very wide face type, respectively $41.9 - 52.2$ mm and $46.2 - 49.8$ mm; in YM and YW with a wide face type, respectively $48.6 - 53.3$ mm and $45.7 - 48.9$ mm; in YM and YW with an average face type, respectively $50.3 - 53.2$ mm and $47.1 - 50.7$ mm; in YM and YW with a narrow face type, respectively $52.0 - 54.9$ mm and $49.2 - 52.9$ mm;

the value of the ANS-Me distance – in YM and YW with a very wide face type, respectively $56.3 - 61.1$ mm and $54.9 - 58.6$ mm; in YM and YW with a wide face type, respectively $61.0 - 66.0$ mm and $56.8 - 61.5$ mm; in YM and YW with an average face type, respectively $62.1 - 67.6$ mm and $58.9 - 65.6$ mm; in YM and YW with a narrow face type, respectively $60.7 - 65.4$ mm and $56.9 - 62.5$ mm;

the value of the PNS-N distance – in YM and YW with a very wide face type, respectively $46.7 - 51.0$ mm and $46.9 - 50.1$ mm; in YM and YW with a wide face type, respectively $49.8 - 52.8$ mm and $46.3 - 49.0$ mm; in YM and YW with an average face type, respectively $48.5 - 52.4$ mm and $46.5 - 49.0$ mm; in YM and YW with a narrow face type, $52.6 - 55.8$ mm and $48.0 - 50.6$ mm, respectively;

the value of the MP-HP angle – in YM and YW with a very wide face type, respectively $8.8 - 14.4^\circ$ and $16.7 - 21.0^\circ$; in YM and YW with a wide face type, respectively $14.0 - 24.5^\circ$ and $20.0 - 24.4^\circ$; in YM and YW with an average face type,

respectively $18.5 - 23.4^\circ$ and $23.6 - 29.5^\circ$; in YM and YW with a narrow face type, respectively $12.5 - 21.6^\circ$ and $21.7 - 28.3^\circ$;

the value of the ANS-PNS distance – in YM and YW with a very wide face type, respectively $54.0 - 58.5$ mm and $49.1 - 52.1$ mm; in YM and YW with a wide face type, respectively $52.3 - 56.7$ mm and $50.0 - 52.2$ mm; in YM and YW with an average face type, respectively $49.7 - 54.7$ mm and $48.1 - 54.6$ mm; in YM and YW with a narrow face type, respectively $50.6 - 55.4$ mm and $48.8 - 51.3$ mm;

the value of the Ar-Go distance – in YM and YW with a very wide face type, respectively $55.1 - 57.9$ mm and $44.3 - 49.4$ mm; in YM and YW with a wide face type, respectively $50.1 - 55.4$ mm and $44.0 - 49.1$ mm; in YM and YW with an average face type, respectively $49.6 - 55.4$ mm and $43.3 - 50.7$ mm; in YM and YW with a narrow face type, respectively $50.9 - 55.3$ mm and $45.7 - 49.0$ mm;

the value of the Go-Pog distance – in YM and YW with a very wide face type, respectively $76.7 - 86.3$ mm and $71.6 - 76.5$ mm; in YM and YW with a wide face type, respectively $72.8 - 81.4$ mm and $71.2 - 74.4$ mm; in YM and YW with an average face type, respectively $74.2 - 83.7$ mm and $65.9 - 74.4$ mm; in YM and YW with a narrow face type, respectively $76.4 - 82.9$ mm and $70.7 - 74.8$ mm;

the value of the B-Pog distance – in YM and YW with a very wide face type, respectively $4.5 - 6.4$ mm and $5.8 - 6.9$ mm; in YM and YW with a wide face type, respectively $6.8 - 8.3$ mm and $4.6 - 6.6$ mm; in YM and YW with an average face type, respectively $6.3 - 8.5$ mm and $5.9 - 7.7$ mm; in YM and YW with a narrow face type, respectively $6.5 - 8.9$ mm and $6.6 - 7.9$ mm;

the value of the Ar-Go-Gn angle – in YM and YW with a very wide face type, respectively $113.7 - 117.9^\circ$ and $112.6 - 121.5^\circ$; in YM and YW with a wide face type, respectively $114.7 - 124.5^\circ$ and $113.8 - 123.3^\circ$; in YM and YW with an average face type, respectively $116.2 - 123.7^\circ$ and $117.1 - 128.5^\circ$; in YM and YW with a narrow face type, respectively $114.2 - 120.4^\circ$ and $119.8 - 128.5^\circ$;

the value of the distance A-B – in YM and YW with a very wide face type, respectively $0.8 - 2.6$ mm and $-3.0 - -0.5$ mm; in YM and YW with a wide face type, respectively $-1.8 - 2.2$ mm and $-2.5 - 1.0$ mm; in YM and YW with an average face type, respectively $-2.2 - 0.6$ mm and $-2.9 - -1.3$ mm; in YM and YW with a narrow face type, respectively $-1.6 - 1.4$ mm and $-3.7 - 1.5$ mm.

In Ukrainian YM and YW with physiological occlusion with very wide, wide, medium and narrow facial types, the limits of the percentile range of linear and angular indicators of the upper and lower jaws were established using the COGS method. Most of the established indicators have discrepancies both by facial type and, more pronouncedly, by sex.

References:

1. Aldhorae, K. A., Altawili, Z. M., Assiry, A., Alqadasi, B., Al-Jawfi, K. A., & Hwaiti, H. (2019). Prevalence and distribution of dental anomalies among a sample of orthodontic and non-orthodontic patients: A retrospective study. *Journal of international oral health*, 11(5), 309-317.

2. Niemi, P., Kortelainen, M., Harjunmaa, U., & Waltimo-Sirén, J. (2023). Costs and duration of orthodontic-surgical treatment with mandibular advancement surgery. *European Journal of Orthodontics*, 45(5), 558-564.
3. Marchenko, A. V., Shinkaruk-Dykovytska, M. M., Pozur, T. P., Gunas, V. I., & Orlovskiy, V. O. (2020). Models of individual linear dimensions necessary for the construction of the correct form of dental arches in young men with a wide face, depending on the features of odontometric and cephalometric indicators. *Wiadomosci lekarskie (Warsaw, Poland: 1960)*, 73(6), 1103-1107.
4. Burstone, C. J., James, R. B., Legan, H., Murphy, G. A., & Norton, L. A. (1979). Cephalometrics for orthognathic surgery. *J Oral Surg*, 36, 269-277.
5. Dmitriev, M. O. (2016). Correlations of main cranial index with characteristics of upper and lower jaws among residents in Ukraine of adolescent age. *World of Medicine and Biology*, 4(58), 24-29.
6. Dmitriev, M. O. (2017). Links of angular inter-jaws indices with the characteristics of the closure plane, the position of the teeth and the soft-tissue profile of the face in the youth of Ukraine. *World of Medicine and Biology*, 2(60), 51-59.
7. Dmitriev, M. O. (2017). Relations of key cranial indicators with the characteristics of the teeth of the upper and lower jaws and profile face soft tissue in boys and girls. *Reports of Morphology*, 23(1), 125-131.
8. Proffit, U. R. (2017). *Modern orthodontics (translation from English by D. S. Persina)*. MEDpress-inform.