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Abstract
Objectives  To develop a three-stage convolutional neural network (CNN) approach to segment anatomical structures, clas-
sify the presence of lumbar spinal stenosis (LSS) for all 3 stenosis types: central, lateral recess and foraminal and assess its 
severity on spine MRI and to demonstrate its efficacy as an accurate and consistent diagnostic tool.
Methods  The three-stage model was trained on 1635 annotated lumbar spine MRI studies consisting of T2-weighted sagit-
tal and axial planes at each vertebral level. Accuracy of the model was evaluated on an external validation set of 150 MRI 
studies graded on a scale of absent, mild, moderate or severe by a panel of 7 radiologists. The reference standard for all types 
was determined by majority voting and in case of disagreement, adjudicated by an external radiologist. The radiologists’ 
diagnoses were then compared to the diagnoses of the model.
Results  The model showed comparable performance to the radiologist average both in terms of the determination of presence/
absence of LSS as well as severity classification, for all 3 stenosis types. In the case of central canal stenosis, the sensitivity, 
specificity and AUROC of the CNN were (0.971, 0.864, 0.963) for binary (presence/absence) classification compared to the 
radiologist average of (0.786, 0.899, 0.842). For lateral recess stenosis, the sensitivity, specificity and AUROC of the CNN 
were (0.853, 0.787, 0.907) compared to the radiologist average of (0.713, 0.898, 805). For foraminal stenosis, the sensitivity, 
specificity and AUROC of the CNN were (0.942, 0.844, 0.950) compared to the radiologist average of (0.879, 0.877, 0.878). 
Multi-class severity classifications showed similarly comparable statistics.
Conclusions  The CNN showed comparable performance to radiologist subspecialists for the detection and classification of 
LSS. The integration of neural network models in the detection of LSS could bring higher accuracy, efficiency, consistency, 
and post-hoc interpretability in diagnostic practices.
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Introduction

Lumbar spinal stenosis (LSS) is one of the most commonly 
diagnosed spinal pathologies in the United States with high 
prevalence among older age groups [1, 2]. LSS is defined 
as the narrowing of the spinal canal in the lower part of the 
back. The clinical symptoms of LSS can include low back, 
lower extremity and gluteal pain, numbness, a substantial 
loss of mobility, and severe limitations in one’s ability to 
perform daily activities [3]. Among degenerative spine dis-
ease, LSS represents one of most common reason for spinal 
surgery in patients above the age of 65 years [4], hence, 
accurate and reliable diagnosis and subsequent treatment 
has important economic and social consequences [5]. LSS 
is characterized by a narrowing of the central canal, lateral/
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subarticular recesses, or intervertebral foramen, which in 
turn causes compression of the associated neural structures 
[6].

While LSS is defined as a clinical syndrome and diag-
nosed as such, imaging is frequently used as a confirmatory 
tool prior to determining treatment. Magnetic resonance 
imaging (MRI) is the mainstay modality for detailed anatom-
ical assessment of the spine with excellent soft tissue con-
trast and used for confirmation of clinical symptom-based 
diagnoses and determining the optimal treatment course. 
MRI is essential for evaluation of LSS and to confirm clini-
cal findings, largely supplanting CT myelogram studies due 
to its superior soft tissue contrast. A number of studies have 
attempted to identify core quantitative radiological criteria 
for the diagnosis of LSS [7–9]. However, lumbar spine MRI 
interpretation is time-intensive and depends on the indi-
vidual radiologist or surgeons’ expertise and experience, 
therefore supporting objective and standardized methods of 
diagnosing and decision-making are desired.

Machine learning (ML) models, including deep convolu-
tional neural networks (CNN), have already been success-
fully applied for evaluation of LSS and other degenerative 
changes with high accuracy in various approaches [10, 11]. 
However, most CNN algorithms rely on one-component 
models for binary classification (present/absent) of LSS. 
One recent work applied a two-component CNN to detect 
stenosis targeting the central canal, lateral recesses, and neu-
ral foramina with subsequent grading of the stenosis [12].

Here, the purpose of this study was to develop a three-
stage convolutional neural network (CNN) approach to seg-
ment anatomical structures, classify the presence of lumbar 
spinal stenosis (LSS) and assess its severity on spine MRI 
on axial and sagittal MR images. The classification cov-
ers the detection of all three stenosis types—central canal, 
foraminal, and lateral recess. The performance of the model 
has been compared to a panel of radiologist subspecialists 
to test its reliability and accuracy.

Methods

Data set and annotation

External institutional review board approval was obtained 
to retrospectively review anonymized imaging data. The 
initial data set consisted of 1635 MRI studies of adult sub-
jects referred for lumbar spine MRI for low back pain. The 
data set consisted of 45.7% of males (54.3% of females), 
with age ranging from 18 to 85 years. Each MRI study cor-
responded to a patient (1635 MRI studies = 1635 patients). 
Patients with implants or instrumentation, severe scoliosis, 
and poor image quality were excluded. Each MRI study 
was acquired using a standard lumbar spine protocol, 

including T2-weighted axial and sagittal pulse sequences 
with balanced labels. First, T2-weighted axial sequence 
was extracted from each lumbar study. All slices from the 
lumbar disc levels (L1/L2, L2/L3, L3/L4, L4/L5, L5/S1) 
were selected from the T2-weighted axial sequence and 
labeled per slice. On average, around 10 to 15 axial slices 
were obtained from each study, with a more precise count 
of approximately 13.3 for this specific dataset (21,702 
images in total).

For axial images, muscle tissue, the discs, spinal canal, 
thecal sac, neural foramina, nerves, nerve roots, lateral 
recess, facet joints, spinous process, articular process, 
ligamentum flavum, disc bulging or herniation, arteries, 
veins, and kidneys were labeled. On sagittal plane images, 
the discs, vertebral body, spinal canal, spinal cord with 
nerve roots, and spinous processes were labeled for seg-
mentation. The segmentation labelling was performed by 
administrators.

In addition to segmentation of the key anatomical struc-
tures, the studies were also labeled by musculoskeletal-
trained radiologist subspecialists on a scale of 0 (absent), 
1 (mild), 2 (moderate), 3 (severe) for LSS to establish 
the reference standard [13]. The reference standard was 
determined by majority voting rule and in case of disa-
greement, adjudicated by a further radiologist. At first, 
during training, the segmentation model detected the facet 
joints and spinal canal. Then images were resized and aug-
mented (horizontal flips and rotations). Of the 1635 stud-
ies, 1390 were used for CNN weight training, and 245 as 
a validation set for hyperparameter tuning. The dataset 
was randomly divided into a training set for training the 
CNN parameters (1635 studies) and a validation set for 
hyperparameter tuning (245 studies). This was done while 
maintaining the same distribution in each subset, split ratio 
and the rule that images from one study can’t be in differ-
ent sets at the same time. Thus, data splitting was carried 
out based on studies rather than individual images, such 
as images from the same MRI study could go to different 
subsets (to avoid for instance two images from the same 
MRI study going to both training and testing).

Additionally, an external data set of 150 studies were 
reserved for final model accuracy assessment. The inclu-
sion/exclusion criteria were identical to the those of the 
training data set. The external validation set were graded 
on a scale of absent, mild, moderate or severe by a panel of 
7 radiologist subspecialists. The radiologist interpretations 
were then compared to the interpretation of the model.

The number of images for each stenosis (central, lateral 
recess, foraminal) for each severity class (absence, mild, 
moderate, severe) and for each data subset (train, valida-
tion, test) is shown in Supplementary Table 1.
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Image preprocessing

We employed an in-house tool referred to as the “preproc-
essor.” This tool accepts an MRI study as input, where it 
subsequently separates the MRI sequences, identifies the 
specific body part, determines the projection, and catego-
rizes the imaging type for each sequence. Here, the term 
“imaging type” refers to the type based on a relaxation time, 
such as T1-weighted, T2-weighted, and so on.

With the assistance of this tool and the sagittal segmenta-
tion model, which outlines the contours of vertebral bodies 
and intervertebral discs, among other objects (which are the 
discs, vertebral body, spinal canal, spinal cord with nerve 
roots, disc material bulge, and sacrum), we can identify the 
intervertebral disc or vertebral body level that corresponds 
to a given axial slice.

Neural network model

In this section, we describe the neural network model 
employed for the evaluation of lumbar stenosis severity. 
Our approach utilizes a three-stage model, as illustrated 
in Fig. 1, to assess the severity of three types of lumbar 

stenosis: central, lateral recess, and foraminal. This model 
comprises a total of five sub-models: one segmentation 
model, one binary multilabel stenosis classification model 
and three stenosis severity classification models (central, 
lateral recess, and foraminal). The output of our three-stage 
model is depicted in Fig. 2.

Segmentation model

The segmentation model is designed with a U-Net architec-
ture and operates on grayscale MRI axial images as its input. 
Its primary function is to produce a pixel-wise mask deline-
ating 17 anatomical objects within the lumbar region. These 
objects include the disc, thecal sac, nerve, neural foramina, 
lateral recess, spinal canal, herniation, nerve roots, vertebral 
arch, spinous process, facet joint, articular process, ligamen-
tum flavum, muscle, vein, artery, and kidney.

Binary multilabel stenosis classification model

Running in parallel with the segmentation model, the 
binary multilabel stenosis classification model adopts the 
RegNet architecture [18], specifically implementing the 

Fig. 1   Schema of the 3-stage neural network approach. It includes the segmentation model (detection of anatomical structures), the binary clas-
sification (presence or absence) for central, lateral recess and foraminal stenoses and the severity classification model (mild, moderate, severe)
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RegNetY800MF configuration. This model takes the same 
input axial image and provides an output indicating the pres-
ence or absence of each of the three types of lumbar steno-
sis: central, lateral recess, and foraminal.

Severity classification models

For each type of lumbar stenosis (central, lateral recess, 
and foraminal), we employ a separate severity classifica-
tion model based on the RegNetY32GF architecture. Our 
approach involves customizing the input data by incorpo-
rating specific masks that correspond to the type of stenosis 
under examination. In the instance of central stenosis, we 
include masks for the thecal sac and spinal canal. In the case 
of lateral recess stenosis, we add the lateral recess object 
mask, while for foraminal stenosis, we integrate the neural 
foramina object mask. These masks are then combined with 
the original axial image, serving as essential inputs for our 
severity classification models. The reason behind this tai-
lored approach is that these anatomical objects exhibit nar-
rowing when the corresponding type of stenosis is present.

During the inference process, the segmentation model 
and the binary multilabel stenosis classification model run 
independently on the input image. Subsequently, for each 
type of stenosis, the binary classification model's prediction 
dictates whether to proceed with the corresponding severity 
classification model. Specifically, if the binary classification 
model predicts the absence of stenosis, the corresponding 
severity classification model is not utilized. However, if ste-
nosis is predicted, both the source image and the mask out-
put from the segmentation model are provided as inputs to 
the relevant severity classification model. The severity clas-
sification model then predicts the severity level, which can 
be categorized as mild, moderate, or severe for the respective 
type of lumbar stenosis.

Hyper-parameters of the different models are presented 
in Supplementary Table 2.

Statistical analysis

The outcomes of the CNN and the radiologists were com-
pared to the reference standard for detection and grading of 
LSS. For binary classification of LSS, sensitivity, specificity, 
and area under the receiver operating characteristic curve 
(AUROC) were calculated. Compared to sensitivity and 
specificity, AUROC is a measure of prediction performance 
that does not depend on the discrimination threshold. For the 
multi-class grading of LSS, these metrics were computed 
in a one vs. all setting, where averages were weighted by 
the number of observations in each class (weighted average 
metrics).

Inter-rater agreement between the reference standard and 
the model and radiologists was assessed by Cohen’s kappa. 
Level of agreement was defined as follows: 0.0–0.2 (slight), 
0.21–0.4 (fair), 0.41–0.6 (moderate), 0.61–0.8 (substantial), 
0.81–1.0 (almost perfect).

All confidence intervals for metrics in the Results section 
were calculated for the corresponding model. All calcula-
tions were implemented in Python (Version 3.7.4) using 
scikit-learn (Version 1.0.2).

Results

Binary classification

We first evaluated the presence of stenosis as a classi-
fication problem (presence vs absence) and looked at 
each stenosis type (central, lateral recess and foraminal) 

Fig. 2   Illustration of the segmentation model output, the stenosis binary classification output (presence/absence) and the severity classification 
model output for mild, moderate and severe central stenoses on axial plane from MR images
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separately. Sensitivity, specificity and AUROC are pre-
sented in Fig. 3. ROC curves are shown in Supplementary 
Fig. 1.

In the case of central canal stenosis, the sensitivity, spec-
ificity, and AUROC for the radiologists were 0.786 (95% 
confidence interval (CI): [0.619, 0.890]), 0.899 (95% CI: 
[0.878, 0.918]), 0.842 (95% CI: [0.779, 0.905]), respec-
tively, while the metrics for the model were 0.971 (95% CI: 
[0.847, 0.999]), 0.864 (95% CI: [0.840, 0.885]), 0.963 (95% 
CI: [0.946, 0.980]). For binary inter-rater agreement, the 
average Cohen's kappa was substantial between radiologists 
and reference standard with a κ value of 0.372. The κ value 
of the CNN model was 0.431.

For lateral recess stenosis, the sensitivity, specificity, 
and AUROC for the radiologists were 0.713 (95% confi-
dence interval (CI): [0.576, 0.804]), 0.898 (95% CI: [0.877, 
0.916]), 0.805 (95% CI: [0.756, 0.854]), respectively, while 
the metrics for the model were 0.853 (95% CI: [0.689, 
0.950]), 0.787 (95% CI: [0.759, 0.813]), 0.907 (95% CI: 
[0.868, 0.945]). For binary inter-rater agreement, the aver-
age Cohen's kappa was substantial between radiologists and 
reference standard with a κ value of 0.323. The κ value of 
the CNN model was 0.315.

For foraminal stenosis, the sensitivity, specificity, and 
AUROC for the radiologists were 0.879 (95% confidence 
interval (CI): [0.806, 0.932]), 0.877 (95% CI: [0.851, 
0.901]), 0.878 (95% CI: [0.846, 0.910]), respectively, while 
the metrics for the model were 0.942 (95% CI: [0.890, 
0.975]), 0.844 (95% CI: [0.817, 0.868]), 0.950 (95% CI: 
[0.934, 0.965]). For binary inter-rater agreement, the aver-
age Cohen's kappa was substantial between radiologists and 
reference standard with a κ value of 0.596. The κ value of 
the CNN model was 0.672.

Multiclass classification

Next, we compared the performance over the full LSS grad-
ing scale of absence, mild, moderate, and severe. Global 
metrics are shown in Fig. 4, severity class-specific metrics 
are shown in Supplementary Table 3, and severity class-
specific confusion matrices are shown in Supplementary 
Table 4. To account for class imbalances, the average met-
rics were weighted depending on the number of observations 
per class. In the case of central canal stenosis, the sensitiv-
ity, specificity, and AUROC for the radiologists were 0.885 
(95% confidence interval (CI): [0.855, 0.912]), 0.792 (95% 

Fig. 3   Sensitivity, specificity, and AUROC comparisons of the radiologist panel and the model for presence/absence classification of lumbar 
spinal stenosis

Fig. 4   Sensitivity, specificity, and AUROC comparisons of the radiologist panel and the model for severity classification of lumbar spinal steno-
sis
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CI: [0.631, 0.892]), 0.838 (95% CI: [0.772, 0.902]), respec-
tively, while the metrics for the model were 0.855 (95% CI: 
[0.821, 0.884]), 0.969 (95% CI: [0.849, 0.998]), 0.912 (95% 
CI: [0.878, 0.947]). For inter-rater agreement, the average 
Cohen’s kappa between the radiologists and the reference 
standard was 0.376 and 0.310 between the model and the 
reference standard.

For lateral recess stenosis, the sensitivity, specificity, 
and AUROC for the radiologists were 0.887 (95% confi-
dence interval (CI): [0.859, 0.910]), 0.772 (95% CI: [0.589, 
0.811]), 0.804 (95% CI: [0.755, 0.884]), respectively, while 
the metrics for the model were 0.783 (95% CI: [0.745, 
0.816]), 0.856 (95% CI: [0.698, 0.950]), 0.819 (95% CI: 
[0.755, 0.884]). For inter-rater agreement, the average 
Cohen’s kappa between the radiologists and the reference 
standard was 0.359 and 0.199 between the model and the 
reference standard.

For foraminal stenosis, the sensitivity, specificity, and 
AUROC for the radiologists were 0.845 (95% confidence 
interval (CI): [0.801, 0.884]), 0.890 (95% CI: [0.825, 
0.937]), 0.868 (95% CI: [0.831, 0.905]), respectively, while 
the metrics for the model were 0.836 (95% CI: [0.794, 
0.872]), 0.943 (95% CI: [0.895, 0.972]), 0.890 (95% CI: 
[0.861, 0.918]). For inter-rater agreement, the average 
Cohen’s kappa between the radiologists and the reference 
standard was 0.620 and 0.637 between the model and the 
reference standard.

Once again, the model showed comparable performance 
compared to the average radiologist subspecialist on the 
panel, across all types of stenosis.

Discussion

The purpose of this study was to develop an artificial intel-
ligence approach to classify the presence and severity of 
stenosis and to demonstrate its efficacy as an accurate and 
consistent diagnostic tool. We designed a three-stage con-
volutional neural network (CNN) approach to segment ana-
tomical structures, classify the presence of lumbar spinal 
stenoses (central, lateral recess, foraminal) and assess its 
severity on spine MRI. Evaluation on an external data set 
demonstrated comparable performance compared to a panel 
of 7 radiologist subspecialists for the detection and severity 
classification of LSS. For binary diagnosis of central, lateral 
recess and foraminal stenosis, the performance of the CNN 
model was higher as compared to the radiologist average, 
achieving an AUROC of (0.963, 0.907, 0.950) compared to 
(0.842, 0.805, 0.878) of the radiologist average, respectively. 
Accordingly, for multi-class severity grades, the model 
yielded an AUROC of (0.912, 0.819, 0.890) compared to 
the radiologist average of (0.838, 0.804, 0.868), for central, 
lateral recess and foraminal stenosis, respectively.

Our neural network was trained with a large dataset 
(21,702 images), which is often considered sufficient 
for training a model with high accuracy, in particular in 
comparison to previous AI methods that often trained 
on ~ 500–10000 images [14, 15]. However, for severe sten-
oses, the number of images was in the order of several 
hundred, which led to slightly lower precision.

Previous studies have investigated the performance of 
various ML models in detecting and grading LSS on lum-
bar spine MRI. Most of the studies used two experts to 
assess the models’ performance, while our approach con-
sisted of an expert panel of 7–8 radiologists. Hallinan et al. 
designed a two-stage deep learning model, using the first 
model to place region of interests at the central canal, lat-
eral recesses, and neuroforamina with subsequent grading 
by the second model11. Contrasting our results for central 
canal classification, their model showed higher inter-rater 
agreements but better performance of the radiologists for 
both binary (0.98) and multi-class (0.89) classification 
compared to the deep learning model. On a larger data 
set of 7108 lumbar spine MRI on axial and sagittal slices, 
Lu et al. developed a U-Net architecture that was based 
on weakly supervised natural language processing labels 
derived from radiology reports. The accuracy of multi-
class LSS (normal-mild-moderate-severe) grading reached 
an average of 70.6% [16]. Another work trained a two-
stage CNN to localize the thecal sac on axial T2-weighted 
MRI studies at a single motion segment (L4-5) with sec-
ondary grading of the localized region [17]. The grading 
consistency was 77.5% between two expert labels, while 
the model achieved accuracies of 77.9–83.0% compared 
to the expert labels. Most recently, Su et al. generated a 
multi-task classification network on a large data set of 
axial lumbar spine T2-weighted MRI for grading of disc 
herniation, foraminal stenosis, and LSS, that was graded 
by two clinicians as reference standard [18]. The models’ 
accuracies ranged from 79.7 to 87.0% for the external and 
internal data set, respectively.

Compared to previous works, our three-stage model pro-
vides the most comprehensive assessment of lumbar ste-
nosis as it combines segmentation, stenosis classification 
and severity grading. The approach of combining input from 
a source axial image with the stenosis-related anatomical 
object mask output from the segmentation model provides 
the classification model with precise spatial information 
and a contextual understanding of how the stenosis-related 
anatomical object interacts with the surrounding structures. 
This results in more accurate predictions when contrasted 
with the approach of solely passing the source image to the 
classification model [19]. In summary, our three-stage model 
effectively addresses the limitations associated with tradi-
tional approaches by seamlessly integrating both segmenta-
tion and classification techniques.
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The current study has limitations, much of which are 
theoretical limitations with the nature of the current under-
taking—the lack of a “gold standard” or “true north” for 
comparative analysis of the current model. That is, the lack 
of a firmly established consensus around the MRI grading 
scale definitions and the ground truth was established by 
common radiologic grading. This explains the presence of 
disagreement between the raters. Second, the labor-intensive 
manual annotation process limits the number of MRI stud-
ies that could be used for training of the neural network 
model. Furthermore, there was no inter-rater consensus 
established regarding the labeling process. Third, combin-
ing MRI and CT imaging can enhance the accuracy and 
sensitivity of neural networks in detecting stenosis caused by 
osteophytes, since CT helps with the visualization of solid 
structures, making it valuable for detecting osteophytes and 
bony abnormalities. Fourth, patients with severe stenosis 
can experience little symptoms [20], thus revealing the need 
for an AI based not only on imaging but also on symptoms.

Conclusions

In conclusion, we have demonstrated that the integration 
of CNN models is able to diagnose and grade LSS on lum-
bar spine MRI with high accuracy, reliability, and post-hoc 
interpretability comparable or superior to expert radiologists 
and may function as a supporting diagnostic tool. Combined 
with the patient symptoms and patient’s conservative ther-
apy failure, this tool could be very valuable for surgery deci-
sions. In future works, the CNN model should be expanded 
to assess a broader spectrum of degenerative findings that 
occur within the natural course of LSS, including stenosis 
of the subarticular/lateral recesses and/or neuroforaminal 
stenosis.
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