

ОМПЛЕКСНИЙ ПІДХІД ДО МОДЕРНІЗАЦІЇ НАУКИ: МЕТОДИ, МОДЕЛІ ТА МУЛЬТИДИС-ЦИПЛІНАРНІСТЬ

МАТЕРІАЛИ І МІЖНАРОДНОЇ НАУКОВОЇ КОНФЕРЕНЦІЇ

Міжнародний Центр Наукових Досліджень

комплексний підхід до МОДЕРНІЗАЦІЇ НАУКИ: МЕТОДИ, МОДЕЛІ ТА МУЛЬТИДИСЦИПЛІНАРНІСТЬ

19 ЛИСТОПАДА 2021 РІК м. Вінниця, Україна

УДК 001 (08) К 63

Організація, від імені якої випущено видання:

ГО «Міжнародний центр наукових досліджень»

Голова оргкомітету: Рабей Н.Р.

Верстка: Білоус Т.В. Дизайн: Бондаренко І.В.

Конференцію зареєстровано Державною науковою установою «УкрІНТЕІ» в базі даних науково-технічних заходів України та інформаційному бюлетені «План проведення наукових, науково-технічних заходів в Україні» (Посвідчення № 866 від 28.10.2021).

Матеріали конференції знаходяться у відкритому доступі на умовах ліцензії Creative Commons Attribution 4.0 International (СС ВҮ 4.0).

Роботи, що містять цифровий ідентифікатор DOI індексуються в ORCID, CrossRef та OUCI (Український індекс наукового цитування).

Комплексний підхід до модернізації науки: методи, моделі та мультидисциплінарність: матеріали І Міжнародної наукової конференції (Т. 3), м. Вінниця, 19 листопада, 2021 р. / Міжнародний центр наукових досліджень. — Вінниця: Європейська наукова платформа, 2021. — 126 с.

ISBN 978-617-8037-00-0 DOI 10.36074/mcnd-19.11.2021 ISBN 978-617-7991-57-0 (TOM 3)

Викладено матеріали учасників І Міжнародної спеціалізованої наукової конференції «Комплексний підхід до модернізації науки: методи, моделі та мультидисциплінарність», яка відбулася у місті Вінниця 19 листопада 2021 року.

УДК 001 (08)

© Колектив учасників конференції, 2021

ISBN 978-617-7991-57-0 (том з) © ГО «Європейська наукова платформа», 2021

© ГО «Міжнародний центр наукових досліджень», 2021

ISBN 978-617-8037-00-0

3MICT

СЕКЦІЯ XX. ПЕДАГОГІКА ТА ОСВІТА

CRITICAL THINKING SKILLS IN ESP TEACHING Kruk A.A6
GANJAVIY MUGʻANNIYNOMALARI Joʻraqulova S8
MOBILE APPLICATIONS AS AN INCENTIVE FACTOR IN STUDYING A FOREIGN LANGUAGE BY STUDENTS OF TECHNICAL SPECIALTIES Kachmarchyk S
TRANSLATION OF SCIENTIFIC AND TECHNICAL LITERATURE BY STUDENTS OF NON-LANGUAGE SPECIALTIES Karabitskova N.O
ВИКОРИСТАННЯ ІГРОВИХ ТЕХНОЛОГІЙ В ПОЧАТКОВІЙ ШКОЛІ Бейсюк Х.М., Кондур О.С 15
ВИКОРИСТАННЯ ІНТЕРАКТИВНИХ МЕТОДІВ У ВИКЛАДАННІ ДИСЦИПЛІНИ «АНАТОМІЯ ЛЮДИНИ» НА КАФЕДРІ АНАТОМІЇ, ТОПОГРАФІЧНОЇ АНАТОМІЇ ТА ОПЕРАТИВНОЇ ХІРУРГІЇ ПВНЗ «КИЇВСЬКИЙ МЕДИЧНИЙ УНІВЕРСИТЕТ» Плахотний Р.О.
ВПРОВАДЖЕННЯ СУЧАСНОГО ОБЛАДНАННЯ ДЛЯ ВИГОТОВЛЕННЯ ЖАКЕТУ ЖІНОЧОГО ПРИ ПІДГОТОВЦІ МАЙБУТНІХ СПЕЦІАЛІСТІВ ЛЕГКОЇ ПРОМИСЛОВОСТІ Силенок І.П21
ЁШЛАРНИ КАСБГА ЎҚИТИШДА ИННОВАЦИОН ТЕХНОЛОГИЯЛАРДАН ФОЙДАЛАНИШ Зияев И.Н23
ЗАСТОСУВАННЯ SMART-ТЕХНОЛОГІЙ В ОСВІТІ Хамелко Я.А., Кондур О.С.
ЗАСТОСУВАННЯ ІКТ В МІЖДИСЦИПЛІНАРНОМУ НАВЧАННІ НА ЗАНЯТТЯХ З МАТЕМАТИКИ Колесник Л.Д
ИГРА КАК ВЕДУЩИЙ МЕТОД ОБУЧЕНИЯ ДОШКОЛЬНИКОВ ИНОСТРАННОМУ ЯЗЫКУ Абдуллаева Л.С.
ІНСТРУМЕНТАЛЬНЕ МУЗИКУВАННЯ ЯК ЗАСІБ РОЗВИТКУ МУЗИЧНИХ І ТВОРЧИХ ЗДІБНОСТЕЙ ДІТЕЙ МОЛОДШОГО ШКІЛЬНОГО ВІКУ Комарова І.О., Орданова О.О.
ІНФОРМАЦІЙНА КОМПЕТЕНТНІСТЬ УЧИТЕЛЯ ПОЧАТКОВИХ КЛАСІВ ЯК СКЛАДОВА ІНФОРМАТИЗАЦІЇ ОСВІТИ Пиць Н.О., Кондур О.С.
КОНСПЕКТУВАННЯ ЯК ВИД САМОСТІЙНОЇ РОБОТИ СТУДЕНТА В УМОВАХ ДИСТАНЦІЙНОГО НАВЧАННЯ Лагдан С.П.
МОЖЛИВОСТІ ТА РИЗИКИ ВПРОВАДЖЕННЯ ДИСТАНЦІЙНОГО НАВЧАННЯ В ПОЧАТКОВИХ КЛАСАХ Головата М.В., Кондур О.С43
ОСВІТНЯ ТРАЄКТОРІЯ СТАНОВЛЕННЯ МАЙБУТНЬОГО ФАХІВЦЯ У ЗМІСТІ ФАХОВОЇ ПЕРЕДВИЩОЇ ОСВІТИ МОНІВ В В В В В В В В В В В В В В В В В В

ПРОЯВЛЕНИЯ ИНДИВИДУАЛЬНЫХ РАЗЛИЧИЙ В ВЫСШИХ МОЗГОВЫХ ФУНКЦИЯХ ЧЕЛОВЕКА И ВАЖНОСТЬ ИХ ПРИНЯТИЯ ВО ВНИМАНИЕ В ПЕДАГОГИЧЕСКОЙ ДЕЯТЕЛЬНОСТИ
Ткаченко Е.В., Патхан Мускан Хан Шакур Хан49
РЕЗУЛЬТАТИ ЕКСПЕРИМЕНТАЛЬНОЇ ПЕРЕВІРКИ ПІДГОТОВКИ МАЙБУТНІХ ВЧИТЕЛІВ ПОЧАТКОВИХ КЛАСІВ ЗЗСО ДО ОСОБИСТІСНО ОРІЄНТОВАНОГО НАВЧАННЯ ЗДОБУВАЧІВ ПОЧАТКОВОЇ ОСВІТИ Авраменко К.Б., Сачук Г.В
ТВОРЧІСТЬ У ПІДГОТОВЦІ ВИКЛАДАЧІВ
Швай Р.І55
ФОРМУВАННЯ ЗАГАЛЬНИХ ТА ФАХОВИХ КОМПЕТЕНТНОСТЕЙ У ПРОЦЕСІ ВИКЛАДАННЯ УКРАЇНОМОВНИХ ОСВІТНІХ КОМПОНЕНТІВ Котелевська Л.Д., Гніда Г.М.57
ШКІЛЬНЕ КРАЄЗНАВСТВО ЯК ОСНОВА ФОРМУВАННЯ НАЦІОНАЛЬНОЇ ІДЕНТИЧНОСТІ ОСОБИСТОСТІ Юрків М.І., Кондур О.С59
торків гіп, кондур окі шишшшшшшшшшшшшш
СЕКЦІЯ ХХІ. ПСИХОЛОГІЯ ТА ПСИХІАТРІЯ
PSYCHOLOGICAL FEATURES OF ADOLESCENTS WITH INTELLECTUAL DISABILITIES Bocheliuk V.Y., Lindhren V.R. 61
USE OF CORRECTIONAL TECHNOLOGIES IN WORK WITH CHILDREN WITH AUTISM SPECTRUM DISORDERS Panov M.S., Shpyrna A.R64
АРТТЕРАПІЯ – ОДИН ІЗ ІНСТРУМЕНТІВ МЕДИЦИНИ Платонова Д.О., Мареніч Г.Г67
ВПЛИВ ЖИТТЄВОЇ ФІЛОСОФІЇ «SLOW LIFE» НА ПСИХОЛОГІЧНЕ БЛАГОПОЛУЧЧЯ Шевченко В.В., Кузьміна М.О., Ніколіна О.Т70
ДОСЛІДЖЕННЯ УМОВ УСПІШНОЇ ПРОФЕСІЙНОЇ РЕАЛІЗАЦІЇ Каднова К.В.73
НЕНАСИЛЬСТВО ЯК ФЕНОМЕН ПОЗИТИВНОЇ КОМУНІКАЦІЇ В ПСИХОЛОГІЇ Федорков О.М.78
ПСИХОЛОГІЧНІ ЗАСАДИ ФАБІНГУ В ПІДЛІТКОВОМУ ТА ЮНАЦЬКОМУ ВІЦІ Рукштель Ю.С81
СЕКЦІЯ ХХІІ. МЕДИЧНІ НАУКИ ТА ГРОМАДСЬКЕ ЗДОРОВ'Я
SEMIZLIKNI DAVOLASHDA DIETOTERAPIYANING AHAMIYATI Maxamadxodjaeva M.A., Abidova N83
THE ROLE OF MOLECULAR-GENETIC STUDIES ON THE COURSE OF CHRONIC MYELOID LEUKEMIA Research group: Sultonova S.X. qizi, Mohammad Din Asmo, Karimov K.Y., Boboyev K.T., Kazakbayeva K.M
XALQ TABOBATIDA GIRUDATERAPIYANING O'RNI Xojiaxmedov X., Maxamadxodjaeva M88

ГЕНЕТИЧЕСКИЙ ПОЛИМОРФИЗМ И ГИПЕРРЕАКТИВНОСТЬ БРОНХОВ ПРИ ОБСТРУКТИВНЫХ СИНДРОМАХ

НАУЧНО-ИССЛЕДОВАТЕЛЬСКАЯ ГРУППА:

Яковлева Ольга Александровна

доктор мед. наук, профессор, зав. кафедрой клинической фармации и клинической фармакологии ВНМУ, Украина

Щербенюк Наталья Васильевна

канд. мед. наук, ассистент кафедры клинической фармации и клинической фармакологи ВНМУ, Украина

Марчук Александр Васильевич

ассистент кафедры физической и реабилитационной медицины *ВНМУ, Украина*

Крикус Оксана Юрьевна

ассистент кафедры клинической фармации и клинической фармакологи ВНМУ, Украина

Витрук Татьяна Константиновна

ассистент кафедры клинической фармации и клинической фармакологи ВНМУ, Украина

Гойна-Кардасевич Олег Юрьевич

аспирант кафедры клинической фармации и клинической фармакологи ВНМУ, Украина

Научное понимание патогенеза обструктивных синдромов значительно углубилось в последние годы, и от упрощенного взаимодействия «аллергениммунная система» дополнено молекулярными механизмами, в том числе, с акцентом на генетический полиморфизм. Клеточный состав органов дыхания включает более 30 различных элементов, каждый из которых становится объектом изучения. Среди респираторной патологии хроническая обструктивная болезнь легких (ХОЗЛ) и бронхиальная астма (БА) занимают ведущие позиции по распространенности, смертности [7], привычные параметры оценки функции внешнего дыхания уже не могут удовлетворить задачи формирования персонализированной медицины, которая нуждается в более индивидуальных маркерах и фенотипах.

Для легких эти проблемы начинаются уже в процессе их внутриутробного формирования, с учетом многообразия составляющих морфогенеза, который включает 5 этапов развития их архитектуры. Достаточно изучена генетика формирования сурфактантной системы и ее нарушения, а также пути регуляции через гены SHH, FGF и TTF-1 (они определяют респираторный синдром при

рождении, врожденные пороки, респираторный эпителий), однако эти молекулярные механизмы еще предстоит уточнять [10].

Прогноз БА в детстве, несомненно, привлекает исследователей своим максимальным гуманным значением, варианты генетических «поломок» чрезвычайно разнообразны. Так, в мета-анализе, посвященном роли семейства ADAM (дезинтегрины и металлопротеиназа) определены эти полиморфизмы: ADAM33 влияет на функцию гладких мышц и фибробласты легких, показана роль гомозиготного мутантного генотипа rs511898 и гетерозиготного rs44707, а также дополнена роль генов rs2243250, rs2070874, rs2280091, rs2280090, rs2787094, rs44707, rs528557, связанных с высоким риском детской астмы [8].

Наиболее значимой в клиническом проявлении избыточного иммунного ответа при обструктивных синдромах можно рассматривать роль миоцитов трахеобронхиального дерева. Механизмы повышенной гиперреактивности с ответным бронзхоспазмом привлекают внимание с точки зрения дифференцированных генетических особенностей, способствующих развитию такого спазма. Они могут касаться как непосредственно морфологии миоцита, а она многофакторная от наличия органелл, так и их ответа на неврогенную или гормональную регуляцию. Увеличение массы гладкой мускулатуры колеблется от 50-200% при нетяжелой БА, до 200-400% при летальных вариантах [1].

Клинические доказательства перестройки и гипертрофии миоцитов трахеобронхиального дерева (ремоделирование) преимущественно оцениваются косвенно, по показателям бронхиальной обструкции, а оценка непосредственной их структуры (гистопатология) остаются в пределах возможностей инвазивных методов (биопсия, хирургия, патологоанатомические результаты). Возможны 2 типа пролиферации миоцитов – только в центральных бронхах или во всем бронхиальном дереве. Однако реальная гиперплазия мышечной массы при БА остается сложной диагностической задачей (риски при бронхоскопии, неточность локальной биопсии) [1].

Почти 15 лет тому описаны гипотезы дисфункции гладких миоцитов в легких: могут быть идентичны гиперсекреторному возможно. они фенотипу атеросклеротической сосудистой стенки, или при астме они обретают пролиферативный фенотип, или гиперсократительный (с увеличенной силой и скоростью сокращения); вторая гипотеза акцентируется на вариантах транскрипта изоформ тяжелых цепей миозина (MHC) - SM-1A, SM-1B, более наявные в мышцах с высоким показателем укорочения, они экспрессируются в трахее человека (SM-2A и SM-2B), но эти детали еще не известны при астме; в третьей гипотезе отражена роль миоцитов как регуляторов воспаления в дыхательных путях, т.к. они способны синтезировать эти медиаторы [11]. Регуляторные процессы сократительных белков связаны с фактором сыворотки SRF, семейством трансформирующего фактора роста-β (TGF-β), который индуцирует гены актина, также возможен потенциальный механизм через соотношение С/ЕВР-альфа. При биопсии бронхов у пациентов с астмой увеличено количество гладких миоцитов в 2 раза при одинаковых их размерах, а в подслизистой оболочке бронхов прирост миоцитов возрастает до 50-83% [11]. В клеточных культурах миоцитов (полученных после резекции легких, из донорских трансплантатов) оценивали уровни РНК на воздействие воспалительных цитокинов: ІС-1В обладал наиболее сильной стимуляцией экспрессии генов хемокинов и цитокинов при БА, затем следовал TGF-1β, стимулирующий гены факторов роста, белки структурного и внеклеточного матрикса и ферменты, при слабом влиянии IL-13 (кроме влияния на эотаксин и хемотаксический белок-1 моноцитов, на рецептор гистамина Н1 и тенасцин).

Приведенные очевидные противоречия, таким образом, свидетельствуют, что сохраняется еще непонимание реальной патофизиологии гладкой мускулатуры при БА [11].

Большинство авторов ссылаются на достаточно емкое исследование полигеномных ассоциаций (GWAS) и функций легких, в котором выявлено 279 локусов, связанных с параметрами FEV1, FVC и соотношения FEV1/FVC, при их сниженной легочной экспрессии у тяжелых больных ХОБЛ, в сочетании с нарушениями рецептора GPR126 и при сниженном против контроля параметре диффузии в легких DLCO/Va, однако его роль недостаточно понятна (по сравнению с исследованиями в неврологии, ангиогенезе, при сколиозе, пороках развития в эксперименте) (обзор Hall R.J. et al) [4]. GPR126 – адгезионный рецептор, он связан с G-белком на хромосоме 6q24. Предполагая задачу уточнения его потенциального влияния, авторы провели комплексный анализ: выделяли РНК, оценивали синтез ДНК, первичные культуры клеток бронхиального эпителия и гладкомышечных клеток человека (после резекции легкого), клетки НЕК293, измеряли уровни цАМФ [4]; передача сигнала GPS126 через цАМФ была идентифицирована в клеточных культурах и при стимуляции агонитом stachelc-пептидом. Экспрессия GPR126 влияла на ремоделирование бронхов через транскриптомный анализ, причем повышенная функция имеет явно негативный характер - повреждающий и разрушительный; идентифицировано около 350 дифференциально экспрессируемых генов через 4 или 24 часа после стимуляции, они при активации GPR26 включают синтез цитокина IL33, CTGF (ген фиброза) и SERPINEL (причастный к эмфиземе легких, фибринолизу); важно, что при повышенной экспрессии GPR126 наблюдается прирост массы Результаты этого исследования связывают новую роль GPR126 с патофизиологией ХОБЛ – ремоделированием и воспалением в легких [4].

Уточнение ответных реакций миоцитов при БА на генетическом уровне также проанализировано авторами в Чикаго (Департамент Генетики Человека, Университет): оценивались транскрипционные, эпигенетические и клеточные ответы гиперреактивности при стимуляции двумя цитокинами и их комбинации – IL-13, IL-17A, IL-13+IL-17A [9]. Это исследование дополнило ранние базы данных и результаты масштабного GWAS, в которых преобладала оценка иммунных реакций, реакций в коже, кишечнике, селезенке. В анализ были включены гладкомышечные клетки от доноров (70), больных БА (14 пациентов, 51-53 лет, среди них 46-49 Установлено, что IL-13 индуцировал 4105 дифференциально экспрессируемых генов, IL17-A - 1059, а их комбинация - 4519, что подчеркивало чувствительность дыхательных путей к этим цитокинам при БА; в то же время было мало изменений в уровнях метилирования ДНК, но роль IL-17A оказалась более значима для сократительной функции, причем гиперреактивность у больных на IL-17А отличалась от контрольной группы на транскрипционном и клеточном уровнях. Таким образом, измерение сократительной функции у этих же доноров связало генетические и молекулярные ответы при действии цитокинов, с четкими различиями от экспрессии генов и от метилирования генома в контрольной группе [9].

Среди последних наблюдений достаточно интересны экспериментальные данные Chiba Y. с соавторами (2018) [2], в которых среди механизмов сокращения миоцита авторы уделяют внимание сократительным белкам. На модели путей гиперреактивности дыхательных астмы y японских мышей, сенсибилизированных овальбумином, выделяли РНК из главных бронхов, анализировали микрочипы и количественные урони экспрессии транскриптов мРНК; также проводили анализ жидкости бронхоальвеолярного лаважа (БАЛ) для

определения роли простагландина D2(PGD2), он синтезируется тучными клетками, тромбоцитами и альвеолярными макрофагами, и был предложен как ключевой липидный иммуномодулятор, как продукт арахидоновой кислоты, владеет сильным антипролиферативным эффектом. Из 56 605 наборов зондов в генных чипах, отмечено: у 557 - повышенная регуляция, у 213 - пониження, что отражает значительные изменения генной регуляции миоцитов, их измененный ответ на сигнальные молекулы эйкозаноидов. У мышей среди 12 экспрессируемых генов резко увеличены Pla2g4c (PLA2), что предполагает повсеместную его роль, и способствует приросту эйкозаноидов. Показан прирост экспрессии мРНК-синтазы липокалинового типа (Ptgs2) и гематопоэтической PGD-синтазы (Hpgds), это возможное отражение сдвига метаболизма арахидоновой кислоты для производства PGD2 с последующим сокращением гладких мышц в ответ на антигены. Наоборот, продукция PGI2 снижена, что может уменьшать релаксацию дыхательных путей и ингибировать астму, хотя экспрессии PGI2-синтазы (Ptgs) не была изменена, также как и тромбоксан-А-синтазы (Tbxas1); такие результаты отражают сложность понимания генетики этих ферментов при БА [2].

При наличии такого многообразия, генетические факторы, несомненно, оказываются причастными к ответам на глюкокортикоидную (ГКС) терапию БА. Клинические наблюдения часто скрывают и вызывают непонимание негативного ответа. Группа исследователей в США [5] идентифицировала 316 дифференциально экспрессируемых генов: известные DUSP1, KLF15, PER1, TSC22D3, и менее изученные C7, CCDC69, CRISPLD2, которые реагируют на ГКС. Авторы контролировали ожидаемое улучшение течения БА при терапии ГКС в течение 4-8 недель, как и реакцию на бета-агонисты – по динамике ОФВ1, а также обрабатывали клеточные линии миоцитов (полученных от белых доноров) цитокинами. Установлено, что ген CRISPLD2 был высоко чувствителен к ГКС, дексаметазон увеличивает уровни его мРНК при ответе на цитокин IL-1β, через механизм обратной связи; этот ген (хромосома 16q24.1) высоко экспрессируется в легких, трахее, особенно в гладкомышечных клетках, также влияет на онкогенез, связывается выход липополисахаридом снижает провоспалительных маркеров И мононуклеарах, однако варианты его активации возможны и требуют уточнения (например, различия при септическом шоке), особенно для фенотипов БА, т.к. у людей имеет место значительная вариабельность уровней экспрессии генов [5].

Иллюстрацией различных вариантов течения БА может быть редкий клинический случай [3], как впечатляющий пример разнообразия биологических факторов при БА. Некурящая женщина, 54 лет, с диагнозом БА, полипоза носа, хронического ринита (более 20 лет) наблюдалась в связи с острой крапивницей (прием аспирина, метамизола), перенесла дважды полипэктомию носа. Однако при рентгенограмме грудной клетки выявлен ателектаз в правой нижней и средней долях легкого, на КТ установлено облитерацию правого среднего бронха, полиповидную массу в нем; далее двумя биопсиями бронхов подтверждена метаплазия и разрастание гладких мышц. После правой средней лобэктомии найдено полип в бронхе до 2,5 см, в нем разрастание гладкой мускулатуры с эозинофильной инфильтрацией, которая распространялась на все структуры бронхов. Авторы полагают, что течение БА у пациентки нацеливает на уточнение индивидуальных, еще неясных возможных механизмов ремоделирования бронхов [3].

Не менее важными аспектами, кроме функций миоцитов, можно считать научную информацию относительно роли генетического полиморфизма бронхиального эпителия, его участия в патофизиологии обструктивных синдромов. Это отдельное новое направление получило определение «Эпителиальный стресс»,

отражая первую линию защиты эпителия на внешние и эндогенные стимулы. В свою очередь, он становится «жертвами» хронического воспаления, изменяющего его ответные реакции. Среди последних доказательств можно назвать исследование дифференцированного метаболизма в эпителии: у пациентов с БА (39 человек) и ХОБЛ (7) против контроля (16) при транскриптомном анализе бронхиального эпителия снижена экспрессия генов окислительного фосфорилирования, особенно при тяжелой астме; наоборот, гены липидного метаболизма усилены (прирост уровней фосфатидилхолина, лизолипидов, и бис-моноацилглицеринфосфата), которые коррегировались термопластикой бронхов за 6 месяцев терапии [6].

Приведенные данные, очевидно, не исчерпывают всего многообразия генетических поломок в миоцитах при обструкции, так как структура мышечной клетки может регулироваться и нарушаться на уровнях органелл, мембран, внутриклеточных медиаторов, ферментов. Поэтому остаются не ясными главенствующие наборы генов, ответственных за гиперреактивность бронхов.

ВЫВОДЫ. Представленные информационные ссылки отражают чрезвычайное разнообразие генетических влияний в респираторной медицине – от значимых до минимальных, часто статистически недостоверных. Поэтому последующие перспективные направления генетического картирования могут углубить наше понимание патофизиологии обструктивного синдрома, способствовать выделению эффективных маркеров для будущей целевой фармакотерапии.

Список использованных источников:

- 1. Bai TR, Knight DA. Structural changes in the airways in asthma: observations and consequences. Clin Sci, 2005; 108: 463-477.
- 2. Chiba Y, Suto W, Sakai H. Augmented Pla2g4c/Ptgs2/Hpgds axis in bronchial smooth muscle tissues of experimental asthma. PLOS ONE, August 30, 2018; 13(8): e0202623.
- 3. Ergan-Arsava B, Karakaya G, Firat P, Kalyoncu AF. Smooth muscle hyperplasia in an asthmatic patient: do we know it all? Respiration, 2011; 81:152-156. DOI: 10.1159/000319551.
- 4. Hall RJ, O'Loughlin J, Billington CK, et al. Fuctional genomics of GPR126 in airway smooth muscle and bronchial epithelial cells. The FASEB Journal, 2021; 35: e21300. DOI: 10.1096/fj. 202002073R.
- 5. Himes BE, Jiang X, Wagner P, et al. RNA-Seq transcriptome profiling identifies CRISLD2 as a Glucocorticoid responsive gene that modulates cytokine function in airway smooth muscle cells. PLOS ONE, 2014; (9), 6, e99625, www. plosone. org.
- 6. Ravi AR, Goorsenberg AWM, Dijkhuis A, et al. Metabolic differences between bronchial epithelium from healthy individuals and patients with asthma and the effect of bronchial thermoplasty. J Allergy Clin Immunol, 2021 Nov; 148 (5): 1236-1248. DOI: 10.1016/j.jaci.2020.12.653.
- 7. Soriano JB, Abajobir AA, Abate KH, et al. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Respir. Med. 2017; 5: 691-706.
- 8. Sun FJ, Zou LY, Tong DM, et al. Association between ADAM metallopeptidase domain 33 gene polymorphism and risk of childhood asthma: a meta-analysis. Braz J Med Biol Res, 2017; 50(10): e6148. DOI: 10.1590/1414-431x20176148.
- 9. Thompson EE, Dang Q, Mitchell-Hadley B, et al. Cytokine-induced molecular responses in airway smooth muscle cells inform genome-wide association studies of asthma. Genome Medicine, 2020; 12: 64. DOI: 10.1186/s13073-020-00759-w.
- 10. Whitsett JA, Wert SE, Trapnell BC. Genetic disorders influencing lung formation and function at birth. Human Molecular Genetics, 2004; Vol 13, 2, R207-215. DOI: 10.1093/hmg/ddh252.
- 11. Woodruff PG. Gene expression in asthmatic airway smooth muscle. Proc Am Thorac Soc, 2008; 5:113-118. DOI: 10.1513/pats. 200705-059VS.