

Raisa Koval', On a Functional Equation with a Group Isotopy Property, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2005, Number 2, 65-71

Use of the all-Russian mathematical portal Math-Net.Ru implies that you have read and agreed to these terms of use http://www.mathnet.ru/eng/agreement

Download details:
IP: 178.74.247.41
April 21, 2021, 11:06:39

On a Functional Equation with a Group Isotopy Property

Raisa Koval'

Abstract

The set of all solutions of functional equation $F_{1}\left(F_{2}(z ; x) ; F_{3}(y ; z)\right)=$ $F_{4}\left(F_{5}(x ; y) ; x\right)$ on quasigroup operations of an arbitrary fixed set are found. The result implies W. Dudek's theorem [1], which presents the operation in a quasigroup satisfying the identity $x y \cdot x=z x \cdot y z$.

Mathematics subject classification: 20N15, 20 N05.
Keywords and phrases: Quasigroup, functional equation, group isotope, identity.
Functional equations play a specific role in the quasigroup theory. V.D. Belousov was the first who opened the new field. He announced in [2] the fact that later became known as the Four quasigroup theorem. It was strengthened, complitely proved and published in [3] two years later. The theorem received general acceptance and wide application. He was also the first who applied the following theorem: if a quasigroup satisfies an uncancellable balanced identity, then it is isotopic to a group [4].

In [5] such identities are called identifies with group isotopy property (gip) and a functional equation has a (full) group isotopy property if some (correspondingly, any) component of every solution of the equation is isotopic to a group.

The class of all general quadratic functional identities with gip was described in $[6,7]$. In [8] a complete classification was presented up to parastrophic equivalency of all general parastrophic uncancellable quadratic functional equations having n objective variables for $n=3,4,5$. The results imply that there exists one equation when $n=3$ (general associativity); two equations when $n=4$ (general mediality and general pseudomediality); and four equations when $n=5$. These are the only equations having a full gip for all $n=3,4,5$.

Here we give a clear proof of the results announced in [9]. Namely, we consider a general functional equation which is not quadratic, but has a gip:

$$
\begin{equation*}
F_{1}\left(F_{2}(z ; x) ; F_{3}(y ; z)\right)=F_{4}\left(F_{5}(x ; y) ; x\right) . \tag{1}
\end{equation*}
$$

This equation corresponds to the identity $x y \cdot x=z x \cdot y z$ considered by W.Dudek [1]. We obtained some of his results as consequences of our main theorem.

Theorem 1 (Four quasigroup theorem,[10]). The set of all solutions of the general associativity equation

$$
\begin{equation*}
F_{1}\left(F_{2}(x ; y), z\right)=F_{3}\left(x, F_{4}(y ; z)\right) \tag{2}
\end{equation*}
$$

(c) Raisa Koval', 2005
on the set of all binary quasigroup operations of an arbitrary fixed set Q is described by:

$$
\begin{array}{ll}
F_{1}(t, z)=\mu t+\gamma z, & F_{2}(x ; y)=\mu^{-1}(\alpha x+\beta y) \\
F_{3}(x, u)=\alpha x+\nu u, & F_{4}(y ; z)=\nu^{-1}(\beta y+\gamma z)
\end{array}
$$

where $(Q ;+)$ is a group, $\mu, \nu, \alpha, \beta, \gamma$ are substitutions on the set Q.
The following assertion easily follows from the Four quasigroup theorem.
Corollary 2. The set of all solutions of the functional equation

$$
\begin{equation*}
F_{1}\left(F_{2}(x ; y), z\right)=F_{1}\left(x, F_{3}(y ; z)\right) \tag{3}
\end{equation*}
$$

on the set of all binary quasigroup operations of a set Q are described by the following equalities:

$$
\begin{equation*}
F_{1}(x ; y)=\alpha x+\gamma y, \quad F_{2}(x ; y)=\alpha^{-1}(\alpha x+\beta y), \quad F_{3}(x ; y)=\gamma^{-1}(\beta x+\gamma y) \tag{4}
\end{equation*}
$$

where $(Q ;+)$ is a group, α, β, γ are substitutions of the set Q.
Proof. Let a triple $\left(f_{1}, f_{2}, f_{3}\right)$ of quasigroup operations, defined on an arbitrary fixed set Q, be a solution of (3), then the tuple $\left(f_{1}, f_{2}, f_{1}, f_{3}\right)$ is a solution of (2), and then

$$
\begin{align*}
& f_{1}(t, z)=\mu t+\gamma_{0} z, \quad f_{2}(x ; y)=\mu^{-1}\left(\alpha x+\beta_{0} y\right) \\
& f_{1}(x, u)=\alpha x+\gamma u, \quad f_{3}(y ; z)=\gamma^{-1}\left(\beta_{0} y+\gamma_{0} z\right) \tag{5}
\end{align*}
$$

for a group $(Q ;+)$ and substitutions $\alpha, \beta_{0}, \gamma_{0}, \gamma, \mu$ of the set Q. So

$$
\begin{equation*}
\mu t+\gamma_{0} z=\alpha t+\gamma z \tag{6}
\end{equation*}
$$

for all $t, z \in Q$. Let 0 denote the neutral element of the group $(Q ;+)$. Putting $z:=\gamma_{0}^{-1} 0$ and $t:=\alpha^{-1} 0$ we obtain two equalities:

$$
\mu(t)=\alpha t+\gamma\left(\gamma_{0}^{-1} 0\right), \quad \gamma(z)=\mu\left(\alpha^{-1} 0\right)+\gamma_{0} z
$$

Substitute them into (6):

$$
\alpha t+\gamma\left(\gamma_{0}^{-1} 0\right)+\gamma_{0} z=\alpha t+\mu\left(\alpha^{-1} 0\right)+\gamma_{0} z
$$

It implies that $\gamma\left(\gamma_{0}^{-1} 0\right)=\mu\left(\alpha^{-1} 0\right)=: a$, so $\mu=R_{a} \alpha, \gamma=L_{a} \gamma_{0}$. Denoting $\beta:=$ $R_{a}^{-1} \beta_{0}$, we obtain the relations (4).

The next statement is evident, but one can find its proof in [11] or in [12]. We recall, a substitution α of a group $(Q ;+)$ is said to be unitary, if $\alpha 0=0$, where 0 denotes the neutral element of the group.

Lemma 3. Let substitutions $\alpha, \beta, \gamma, \delta, \mu$ of a group $(Q ;+)$ satisfy the identity

$$
\alpha(\beta x+\gamma y)=\delta u+\mu v
$$

then α is an automorphism (antiautomorphism) of the group $(Q ;+)$ if α is unitary and $u=x, v=y$ (corresponding $u=y, v=x$).

Below we will follow the notations

$$
\begin{equation*}
L_{i} x:=f_{i}(a ; x), \quad R_{i} x:=f_{i}(x ; a), \quad i=1,2,3 . \tag{7}
\end{equation*}
$$

Theorem 4. A tuple $\left(f_{1}, \ldots, f_{5}\right)$ of quasigroup operations defined on a set Q is a solution of the functional equation (1) iff there exist a group operation (+) and substitutions $\alpha, \beta, \gamma, \delta, \mu$ of the set Q such that

$$
\begin{array}{ll}
f_{1}(x ; y)=\alpha x+\gamma y, & f_{2}(x ; y)=\alpha^{-1}(\mu y-\beta x) \\
f_{3}(x ; y)=\gamma^{-1}(\beta y+\delta x), & f_{5}(x ; y)=f_{4}^{\ell}(\mu x+\delta y ; y) \tag{8}
\end{array}
$$

for a quasigroup operation f_{4} being orthogonal to the group isotope (\circ), where $x \circ y:=$ $\mu x+\delta y$.

Proof. Let a tuple $\left(f_{1}, \ldots, f_{5}\right)$ of quasigroup operations defined on an arbitrary fixed set Q be a solution of the functional equation (1), i.e. the equality

$$
\begin{equation*}
f_{1}\left(f_{2}(z ; x) ; f_{3}(y ; z)\right)=f_{4}\left(f_{5}(x ; y) ; x\right) \tag{9}
\end{equation*}
$$

holds for all $x, y, z \in Q$. Let a be an element of the set Q and let $z:=a$, then we get

$$
f_{4}\left(f_{5}(x ; y) ; x\right)=f_{1}\left(L_{2} x ; R_{3} y\right)
$$

Comparing this equality with (9) we come to

$$
f_{1}\left(L_{2} x ; R_{3} y\right)=f_{1}\left(f_{2}(z ; x) ; f_{3}(y ; z)\right)
$$

To transform it into a general associativity-like equation we replace y with $R_{3}^{-1} y, x$ with $f_{2}^{r}(z ; x)$:

$$
f_{1}\left(L_{2} f_{2}^{r}(z ; x) ; y\right)=f_{1}\left(x ; f_{3}\left(R_{3}^{-1} y ; z\right)\right)
$$

and replace f_{3} and f_{2}^{r} with their transposed ones:

$$
f_{1}\left(L_{2} f_{2}^{r *}(x ; z) ; y\right)=f_{1}\left(x ; f_{3}^{*}\left(z ; R_{3}^{-1} y\right)\right)
$$

Since $f^{r *}=f^{r r \ell r}=f^{\ell r}$, then, designating

$$
\begin{equation*}
f_{2}^{\prime}(t ; z):=L_{2} f_{2}^{l r}(t ; z), \quad f_{3}^{\prime}(z ; y):=f_{3}^{*}\left(z ; R_{3}^{-1} y\right) \tag{10}
\end{equation*}
$$

we receive the identical equality

$$
f_{1}\left(f_{2}^{\prime}(x ; y) ; z\right)=f_{1}\left(x ; f_{3}^{\prime}(y ; z)\right)
$$

which means that the tuple $\left(f_{1}, f_{2}^{\prime}, f_{1}, f_{3}^{\prime}\right)$ of the operations is a solution of the associativity functional equation (3). Corollary 2 implies the existence of a group $(Q ;+)$ and substitutions α, β, γ such that

$$
\begin{equation*}
f_{1}(x ; y)=\alpha x+\gamma y, \quad f_{2}^{\prime}(x ; y)=\alpha^{-1}(\alpha x+\beta y), \quad f_{3}^{\prime}(x ; y)=\gamma^{-1}(\beta x+\gamma y) \tag{11}
\end{equation*}
$$

come true. Let us find the operations f_{1}, f_{2}, f_{3}. The first equality of (11) coincides with (8) for the operation f_{1}. Taking into account the third equality of (11) and the notation (10) we have

$$
f_{3}^{*}\left(x ; R_{3}^{-1} y\right)=\gamma^{-1}(\beta x+\gamma y)
$$

and, consequently,

$$
f_{3}(y ; x)=\gamma^{-1}\left(\beta x+\gamma R_{3} y\right) .
$$

Designating $\delta:=\gamma R_{3}$ we receive the relation (8) for the operation f_{3}.
Again, from the equalities (10) and (11) we have

$$
L_{2} f_{2}^{\ell r}(x ; y)=\alpha^{-1}(\alpha x+\beta y)
$$

Apply the substitution L_{2}^{-1} to the both sides of the last equality:

$$
f_{2}^{\ell r}(x ; y)=\left(\alpha L_{2}\right)^{-1}(\alpha x+\beta y) .
$$

Since $f_{2}^{\ell r}=\left(f_{2}^{\ell}\right)^{r}$, according to the definition of the left and right quasigroup divisions we obtain

$$
f_{2}\left(y ;\left(\alpha L_{2}\right)^{-1}(\alpha x+\beta y)\right)=x .
$$

Let us designate $\mu:=\alpha L_{2}$ and $t:=\mu^{-1}(\alpha x+\beta y)$, then $x=\alpha^{-1}(\mu t-\beta y)$. Thus, the operation f_{2} has decopmosition (8).

Using the received expressions (8) for the operations f_{1}, f_{2}, f_{3}, calculate the left part of the equality (9):

$$
\begin{align*}
f_{1}\left(f_{2}(z ; x) ; f_{3}(y ; z)\right) & =\alpha f_{2}(z ; x)+\gamma f_{3}(y ; z)= \\
& =\mu x-\beta z+\beta z+\delta y=\mu x+\delta y . \tag{12}
\end{align*}
$$

Taking into consideration (12), the equality (9) can be written as:

$$
f_{4}\left(f_{5}(x ; y) ; y\right)=\mu x+\delta y .
$$

It is equivalent to (8) for the operation f_{5}. By virture of the fact that f_{5} is a quasigroup operation, the operation f_{4} is orthogonal to (०), where $x \circ y:=\mu x+\delta y$.

Vise versa, let $(Q ;+)$ be a group, $\alpha, \beta, \gamma, \delta, \mu$ be substitutions of Q and f_{4} be a quasigroup operation being orthogonal to (o). The operations f_{1}, f_{2}, f_{3}, defined by (4), are group isotopes therefore they are quasigroups. Orthogonality of f_{4} and (o) implies that f_{5} is a quasigroup operation too.

Let us show that the tuple $\left(f_{1}, \ldots, f_{5}\right)$ of quasigroup operations defined by (8) on Q is a solution of the functional equation (1), i.e. (9) holds. The relation (12) gives

$$
f_{1}\left(f_{2}(z ; x) ; f_{3}(y ; z)\right)=\mu x+\delta y .
$$

Consider the right side of (9):

$$
f_{4}\left(f_{5}(x ; y) ; x\right)=f_{4}\left(f_{4}^{\ell}(\mu x+\delta y ; y) ; y\right)=\mu x+\delta y .
$$

The left sides are equal as the right sides of these equalities are equal.
As a consequence we obtain the W. Dudek's result from [1], which we give in another form.

Corollary 5. A groupoid ($Q ; \cdot$) satisfies the identity

$$
\begin{equation*}
x y \cdot x=z x \cdot y z \tag{13}
\end{equation*}
$$

if and only if $x \cdot y=\varphi x+(\varepsilon-\varphi) y$ for some automorphism φ of a commutative group $(Q ;+)$ such as $\varepsilon-\varphi$ is a substitution of the set Q and the following relation is true

$$
\begin{equation*}
2 \varphi^{2}-2 \varphi+\varepsilon=0 \tag{14}
\end{equation*}
$$

Proof. Fulfilment of the identity (13) means that the tuple $(\cdot ; \cdot ; \cdot ; \cdot ; \cdot)$ is a solution of the functional equation (1), so the relations (8) are true, where every of the operations f_{1}, \ldots, f_{5} coincides with (\cdot).

According to Lemma 3 the equalities $f_{2}=f_{1}$ and $f_{3}=f_{2}$ imply that α and γ are alinear transformations of the group $(Q ;+)$, i.e.

$$
\begin{equation*}
\alpha=R_{b} \varphi, \quad \gamma=L_{c} \psi \tag{15}
\end{equation*}
$$

for some elements $b, c \in Q$ and antiautomorphisms φ, ψ of the group $(Q ;+)$.
Let 0 denote the neutral element of the group ($Q ;+$). According to (13) the equality $00 \cdot 0=00 \cdot 00$ it true. By (8) and (15) it can be written as
$\varphi(\varphi 0+a+b+\psi 0)+a+b+\psi 0=\varphi(\varphi 0+a+b+\psi 0)+a+b+\psi(\varphi 0+a+b+\psi 0)$.
Taking into account that $\varphi 0=\psi 0=0$, we have

$$
\varphi(a+b)+a+b=\varphi(a+b)+a+b+\psi(a+b) .
$$

Therefore $a+b=0$, and the operation (\cdot) has the decomposition

$$
\begin{equation*}
x \cdot y=\varphi x+\psi y . \tag{16}
\end{equation*}
$$

Because of this the identity (13) can be written as

$$
\begin{equation*}
\varphi \psi y+\varphi^{2} x+\psi x=\varphi \psi x+\varphi^{2} z+\psi^{2} z+\psi \varphi y \tag{17}
\end{equation*}
$$

Putting $x=y=0, x=z=0, y=z=0$, we have the following equalities

$$
\begin{equation*}
\varphi^{2}=I \psi^{2}, \quad \varphi \psi=\psi \varphi, \quad \varphi^{2}+\psi=\varphi \psi \tag{18}
\end{equation*}
$$

The first equality implies that $I=\varphi^{2} \psi^{-2}$. Since φ and ψ are antiautomorphisms, then φ^{2} and ψ^{-2} are automorphisms of the group $(Q ;+)$. So I is its automorphisms. Consequently, the group is commutative and φ, ψ are its automorphisms too.

Replace φ^{2} with $I \psi^{2}$ and $\varphi \psi$ with $\psi \varphi$ in the third equality of (18):

$$
\psi-\psi^{2}=\psi \varphi .
$$

It implies $\psi=\varepsilon-\varphi$, so $\varepsilon-\varphi$ is a substitution of the set Q. Summing up the obtained relations we have

$$
0=\varphi^{2}+\psi^{2}=\varphi^{2}+(\varepsilon-\varphi)^{2}=\varphi^{2}+\varepsilon^{2}-2 \varphi+\varphi^{2}=2 \varphi^{2}-2 \varphi+\varepsilon,
$$

i.e. (14) is true.

Vice versa, let $(Q ; \cdot)$ be a quasigroup and $x \cdot y=\varphi x+(\varepsilon-\varphi) y$ for some automorphism φ of a commutative group $(Q ;+)$ such that $\varepsilon-\varphi$ is a substitution of the set Q and equality (14) is true. Then the last equality immediately implies $\varphi^{2}-\varphi+\varepsilon=\varphi-\varphi^{2}$ and so we have

$$
\begin{aligned}
x y \cdot x & =\varphi(\varphi x+(\varepsilon-\varphi) y)+(\varepsilon-\varphi) x=\varphi^{2} x+\varphi(\varepsilon-\varphi) y+(\varepsilon-\varphi) x= \\
& =\left(\varphi^{2}-\varphi+\varepsilon\right) x+\left(\varphi-\varphi^{2}\right) y=\left(\varphi-\varphi^{2}\right) x+\left(\varphi-\varphi^{2}\right) y .
\end{aligned}
$$

The right part of (13) can be calculated by the same way:

$$
\begin{aligned}
z x \cdot y z & =\varphi(\varphi z+(\varepsilon-\varphi) x)+(\varepsilon-\varphi)(\varphi y+(\varepsilon-\varphi) z)= \\
& =\varphi^{2} z+\varphi(\varepsilon-\varphi) x+\varphi(\varepsilon-\varphi) y+(\varepsilon-\varphi)^{2} z= \\
& =\left(2 \varphi^{2}-2 \varphi+\varepsilon\right) z+\left(\varphi-\varphi^{2}\right) x+\left(\varphi-\varphi^{2}\right) y=\left(\varphi-\varphi^{2}\right) x+\left(\varphi-\varphi^{2}\right) y
\end{aligned}
$$

Since the right sides are equal, then the left sides are equal as well.

References

[1] Dudek W.A. Quadratical quasiqroups. Quasigroups and Related Systems, 1997, 4, p. 9-13.
[2] Belousov V.D. Associative system of quasigroups. Uspekhi Mat. nauk, 1958, 13, N 3(81), p 243 (In Russian).
[3] Aczél J., Belousov V.D., Hosszú M. Generalized associativity and bisymmetry on quasigroups. Acta. Math. Acad. Sci. Hung., 1960, 11/1-2, p. 127-136.
[4] Belousov V.D. One theorem on balanced equations. Kvasigruppy i latinskiye kvadraty: Mat. Issled., vyp. 71. Kishinev, Stiintsa, 1983, p. 22-24 (In Russian)
[5] Sokhatsky F. Group Isotopy Property Functional Equations. Fifth International Algebraic Conference in Ukraine, Odessa, 2005 July, 20-27.
[6] KrapeZ̆ A. Stricly quadratic functional equations on quasigroups I. Publ. Inst. Math. (Beograd) (N.S.), 1981, 29(43), p. 125-138.
[7] Krstić S. Kvadratni kvazigrupni identiteti. PhD thesis, University of Belgrade, 1985.
[8] Sokhatsky F.M. A classification of functional equations on quasigroups. Ukrainian Mathematical Journal. 2004, 56, N 4, p. 1259-1266.
[9] Koval R. On Group Isotopy Property Functional Equation. Fifth International Algebraic Conference in Ukraine, Odesa, 2005 July, 20-27.
[10] Belousov V.D. N-ary quasigroups. Kishinev, Shtiintsa, 1972, p. 227.
[11] Belousov V.D. Foundations of the theory of guasigroups and loops. Moscva, Nauka, 1967 (In Russian).
[12] Sokhatskii F.N. On Isotopes of Groups. I. Ukrainian Mathematical Journal, 1995, 47, N 10, p. 1585-1598.
[13] Koval R.E. A classification a quadratic parascophically uncancelled functional equations with five subject variables on quasigroups. Ukrainian Mathematical Journal, 2005, 57, N 8, p. 1058-1068.

Vinnitsa State Pedagogical University
Received May 23, 2005
by Mykhail Kotsubynsky
32 Ostrozka Street
Vinnitsa 21100, Ukraine

