

INTERRELATIONSHIP BETWEEN LIVER FUNCTION, THYROID GLAND FUNCTION, OBESITY AND MICROBIOTA

SCIENTIFIC RESEARCH GROUP:

Pivtorak Kateryna

Doctor of Medical Sciences, Professor,
Department of Clinical Pharmacy and Clinical Pharmacology
National Pirogov Memorial Medical University, Ukraine

Ivanchuk Oleksandr

Postgraduate Student,
Department of Clinical Pharmacy and Clinical Pharmacology
National Pirogov Memorial Medical University, Ukraine

Pivtorak Nataliya

PhD., Associate Professor, Department of Internal and Family Medicine
National Pirogov Memorial Medical University, Ukraine

Shevchuk Tetyana

National Pirogov Memorial Medical University, Ukraine

РОЗДІЛ ХХІІ. МЕДИЧНІ НАУКИ ТА ГРОМАДСЬКЕ ЗДОРОВ'Я

Summary. Hypothyroidism affects metabolism and can be an important factor in the development of metabolic disorders. Metabolic-associated fatty liver disease (MASLD) and obesity occupy a special place in clinical practice due to the high risk of progression to cirrhosis and cardiovascular complications. Recent data suggest that intestinal dysbiosis may act as a key mediator in the pathogenesis of these conditions. This article reviews the pathogenetic mechanisms of the interaction of hypothyroidism, MASLD and obesity, as well as the role of microbiota as a potential target for therapeutic intervention, in particular with the help of probiotics and other corrective measures.

Keywords: MASLD, hypothyroidism, obesity, microbiota, bacterial overgrowth, intestinal permeability, probiotics.

Obesity is a chronic proinflammatory disease that systemically affects normal physiology and metabolism, causing multiple diseases such as cardiovascular disease, diabetes (DM), metabolic-associated fatty liver disease (MASLD), and some cancers [1, 2]. Obesity is considered a major public health problem in the twenty-first century. The presence of obesity and abdominal adipose tissue distribution contribute to the formation of MASLD. Currently, hepatic MASLD and type 2 diabetes are metabolically associated diseases.

The aim of the work is to investigate the relationship between hypothyroidism, metabolic disorders (MASLD and obesity) and the state of the intestinal microbiota, as well as to substantiate the prospects of microbiota-oriented approaches in therapy.

Abdominal obesity plays a leading role in the development and progression of insulin resistance (IR). For the diagnosis of visceral obesity, the index waist circumference/hip circumference is used, which allows assessing the priority accumulation of fat in the abdominal fat depot [3]. According to the literature, body mass index (BMI) is an independent predictor of the development of fatty infiltration of the liver. Studies have shown that the prevalence of MASLD increases linearly with increasing BMI, reaching a 14-fold higher risk at a BMI of 37.5–40 kg/m² compared with the normal weight population [4]. As expected, the absolute risk is higher in patients with diabetes at any BMI. In particular, with regard to the risk of MASLD, the presence of diabetes in a normal weight population was equivalent to a 5–10 kg/m² increase in BMI. In fact, up to 70% of patients with diabetes have fatty liver disease [5], and patients with MMASLD and diabetes have a higher degree of inflammation on liver biopsy and a faster evolution towards hepatocellular carcinoma. Data from the Rotterdam Study have shown that the coexistence of MASLD and diabetes is associated with a higher risk of developing liver fibrosis [6,7], and this process is not affected by age. Moreover, not only the presence of diabetes but also impaired carbohydrate tolerance are associated with an increased risk of developing diabetes in patients with MASLD [8, 9]. Finally, the presence of diabetes increases mortality in patients with MASLD [10]. On the other hand, it is important to mention that the presence of MASLD increases the risk of hyperglycemia and, in patients already suffering from diabetes, increases the risk of metabolic decompensation. Thus, the relationship between MASLD and insulin resistance is mutually aggravating [11]. Several studies have shown an association between MASLD with low body weight and metabolic risk factors such as dyslipidemia, hyperglycemia, and visceral obesity [12, 13, 14]. Moreover, fructose consumption and a cholesterol-rich diet have been associated with the development of MASLD [15, 16].

Thyroid hormones regulate energy metabolism, heat production, and oxidative processes. Hypothyroidism is characterized by a decrease in basal metabolic rate, which can lead to weight gain and fat accumulation. In addition, hypothyroidism contributes to the development of insulin resistance and changes in the blood lipid profile. [17].

The gut microbiota is an important regulator of metabolism and immune response. Dysbiosis, or a change in the composition of the normal flora, is associated with impaired intestinal barrier function, leading to the permeability of endotoxins into the systemic circulation. This process stimulates systemic inflammation and can worsen metabolic status, contributing to the development of both obesity and IBD. Correction of dysbiosis with probiotics, prebiotics, and dietary changes can positively affect metabolism and reduce systemic inflammation [18]. Steatohepatitis should be considered as a potential target for pharmacological treatment [19].

Metabolic status also contributes [20,21]. We found that in patients with MMASLD with excess body weight and obesity, increased leptin levels and decreased adiponectin levels in the blood serum were associated with an increase in the body

mass index and insulin resistance [22]. In excess body weight, proliferation and hypertrophy of adipocytes are accompanied by infiltration by macrophages with subsequent development of inflammatory reactions, resulting in changes in the metabolic activity of adipose tissue [23,24]. This is why a number of scientists consider pathological obesity to be a chronic systemic inflammatory process. These pathogenetic disorders also contribute to the development of sarcopenia in patients with MASLD, which forms a vicious circle in the liver-muscle system and contributes to an increase in cardiovascular risk [25,26].

Conclusion: Dysfunction of adipose tissue caused by low adiponectin and high leptin levels contributes to oxidative stress and inflammation underlying the pathogenesis of MASLD and cardiovascular complications [27,28,29,30]. The relationship between hypothyroidism, MASLD and obesity lies in common pathogenetic mechanisms, among which systemic inflammation plays a key role. Hypothyroidism contributes to a decrease in metabolism, which in turn entails obesity, and obesity is an important risk factor for the development of MASLD. The role of microbiota in this context is to regulate inflammatory processes and metabolism - changes in the composition of intestinal flora can aggravate or, conversely, reduce systemic inflammation [31,32]. A review of modern studies shows that correction of dysbiosis with probiotics can be a promising therapeutic strategy aimed at improving both metabolic status and liver function.

References:

- [1] Sbraccia P, Finer N, editors. *Obesity. Pathogenesis, Diagnosis, and Treatment*. Springer; 2019. Part of the Endocrinology book series (ENDOCR), Cordero P, Li J, Oben JA. *Obesity and NAFLD*; p. 179-194.
- [2] Півторак К.В. Ендотеліальна дисфункція та неалкогольна жирова хвороба печінки. Вінниця: Нова книга;2022.192 с.
- [3] Півторак КВ. Антропометричне дослідження хворих на неалкогольну жирову хворобу печінки. Запорожський медичинський журнал. 2017; 19, 5(104): 623-628.
- [4] Loomis KA, Kabadi S, Preiss D, Hyde C, Bonato V, St Louis M, et al. Body Mass Index and Risk of Nonalcoholic Fatty Liver Disease: Two Electronic Health Record Prospective Studies. *J Clin Endocrinol Metab*. 2016 Mar; 101(3): 945-952. doi: 10.1210/jc.2015-3444.
- [5] Tilg H, Moschen AR, Roden M. NAFLD and diabetes mellitus. *Nat Rev Gastroenterol Hepatol*. 2017 Jan; 14(1): 32-42. doi: 10.1038/nrgastro.2016.147.
- [6] Koehler EM, Plompene EP, Schouten JN, Hansen BE, Darwish Murad S, Taimr P, et al. Presence of diabetes mellitus and steatosis is associated with liver stiffness in a general population: The Rotterdam study. *Hepatology*. 2016 Oct; 63(1): 138-147. doi: 10.1002/hep.27981.
- [7] Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. *Hepatology*. 2016 Jul; 64: 73-84.
- [8] Loomba R, Abraham M, Unalp A, Wilson L, Lavine J, Doo E, et al. Nonalcoholic Steatohepatitis Clinical Research Network. Association between diabetes, family history of diabetes, and risk of nonalcoholic steatohepatitis and fibrosis. *Hepatology*. 2012 Sep; 56(3): 943-951. doi: 10.1002/hep.25772.
- [9] Півторак КВ. Стан ліпідного, вуглеводного обмінів та функції серцево-судинної системи хворих на неалкогольну жирову хворобу печінки з надлишковою масою тіла та ожирінням. *Вісник проблем біології та медицини*. 2013; 3, 1(102): 158-161.

[10] Angulo P, Kleiner DE, Dam-Larsen S, Adams LA, Bjornsson ES, Charatcharoenwitthaya P, et al. Liver Fibrosis, but No Other Histologic Features, Is Associated with Long-term Outcomes of Patients With Nonalcoholic Fatty Liver Disease. *Gastroenterology*. 2015 Aug; 149(2): 389-397. e10. doi: 10.1053/j.gastro.2015.04.043.

[11] Pivtorak K.V., Shcherbenyuk N.V., Pivtorak N.A., Mazur H.M., Luchenko Ya.V. The role of endothelial dysfunction and insulin resistance in the development of cardiovascular complications in patients with metabolic dysfunction-associated steatotic liver disease. *Перспективи та інновації науки* 2025; 2(48), 1917-1935. doi.org/10.52058/2786-4952-2025-2(48)-1917-1935

[12] Степанов ЮМ, Филиппова АЮ. Дислипидемия у пациентов с неалкогольным стеатозом печени и билиарной патологией и пути ее коррекции. *Сучасна гастроентерологія*. 2010; 4(54): 46-51.

[13] Fracanzani AL, Petta S, Lombardi R, Pisano G, Russello M, Consonni D, et al. Liver and Cardiovascular Damage in Patients with Lean Nonalcoholic Fatty Liver Disease, and Association With Visceral Obesity. *Clin. Gastroenterol. Hepatol.* 2017 Oct; 15(10): 1604-1611.e1. doi: 10.1016/j.cgh.2017.04.045.

[14] Пивторак ЕВ. Нарушения функции эндотелия у больных неалкогольной жировой болезнью печени. *Экспериментальная и клиническая гастроэнтерология*. 2014; 102(2): 63.

[15] Enjoji, M.; Yasutake, K.; Kohjima, M.; Nakamura, M. Nutrition and Nonalcoholic Fatty Liver Disease: The Significance of Cholesterol. *Int. J. Hepatol.* 2012; 2012: 1-6. doi: 10.1155/2012/925807.

[16] Perdomo CM, Frühbeck G, Escalada J. Impact of nutritional changes on nonalcoholic fatty liver disease. *Nutrients*. 2019 Mar 21; 11(3): pii: E677.

[17] Safari F, Nabavizadeh A, Vardanjani HM. The association between thyroid function and insulin resistance as measured by the metabolic score for insulin resistance (METS-IR): insights from NHANES 2007-2012. *BMC Endocr Disord*. 2024;24(1):267. Published 2024 Dec 18. doi:10.1186/s12902-024-01779-y

[18] Melnyk, T., & Pivtorak, K. (2024). MICROBIOME AND OBESITY. *Grail of Science*, (38), 379-389. <https://doi.org/10.36074/grail-of-science.12.04.2024.065>

[19] Pivtorak KV. Features of pharmacotherapy of nonalcoholic fatty liver disease in patients with excess body weight and obesity. *Zaporizhzhya Medical Journal*. 2017; 19, 4 (103): 520-524.

[20] Pivtorak, K.V., Mazur, I.A., & Voloshin, M.A. (2017) Correction of metabolic disorders caused by non-alcoholic fatty liver disease. *Deutscher wissenschaftscherold German Science Herald*. 4: 74-77.

[21] Ruiz, C.G. & Checa, J.C.F. (2018) Mitochondrial Oxidative Stress and Antioxidants Balance in Fatty Liver Disease. *Hepatol Commun*. 2(12): 1425-1439.

[22] Pivtorak KV, Shevchuk NA, Pivtorak NA, Fedzhaga IV. Correction of adipocyte secretion disorders in patients with non-alcoholic fatty liver disease with overweight and obesity. *Wiad Lek*. 2019 Aug 31;72(8):1477-1480.

[23] Perdomo, C. M., Frühbeck, G., & Escalada, J. (2019). Impact of nutritional changes on nonalcoholic fatty liver disease. *Nutrients*, 11(3), 677.

[24] Pivtorak K, Yakovleva O, Pivtorak N, Fedzhaga I, Doroshkevich I. Metabolic features of adipose tissue and clinical significance of adipokines in patients with non-alcoholic fatty liver disease (review). *Georgian Medical News* 2021. 7-8 (316-317), 135-141.

[25] Pivtorak, K.V., Marchuk O.V. (2022). Nonalcoholic fatty liver disease and sarcopenia. *Bulletin of problems of biology and medicine*. 3(166): 79-86.

[26] Pivtorak K, Monastyrskyi V, Kuleshov O, Fedzhaga I, Pivtorak N. Relationship between sarcopenia and osteoporosis in non-alcoholic fatty liver disease. *Georgian Med News*. 2022 May;(326):12-17.

[27] Pivtorak KV. Peculiarities of the cell cycle of hepatocytes in experimental nonalcoholic fatty liver disease and its correction. Bulletin of Problems of Biology and Medicine. 2017; 1 (135): 170-174.

[28] Pivtorak K, Fedzhaga I, Pivtorak N, Shevchuk N. Role of systemic inflammation and atherogenesis in the development of NAFLD and concomitant cardiovascular diseases. Atherosclerosis 2021 331, e232-e233.

[29] Skrypnyk I.M., Shcherbak O.V., Maslova G.S. Influence of non-alcoholic steatohepatitis on the course and progression of coronary heart disease. Wiadomości Lekarskie. April 20, 2017; 70(2): 236-40. (in Ukrainian)

[30] Serhiyenko, V., & Serhiyenko, A. (2022). Diabetes mellitus and congestive heart failure. International journal of endocrinology (Ukraine), 18(1), 57–69. <https://doi.org/10.22141/2224-0721.18.1.2022.1146>

[31] Khukhлина О.С., Антонів А.А., Мандрик О.Й., Смандич В.С., Матушчак М.Р. The role of endothelial dysfunction in the mechanisms of progression of non-alcoholic steatohepatitis in patients with obesity and chronic kidney disease. Viad Leck. 2019; 72(4): 523-526.

[32] Cherniavskyi V. V., Didyk O. K. Study of fatty acid-binding protein and Bacteroidetes and Firmicutes levels in patients with metabolic-associated fatty liver disease in combination with type 2 diabetes mellitus and small intestinal bacterial overgrowth syndrome. Zaporizhzhia Medical Journal, 2024;26(2):114-117. <https://doi.org/10.14739/2310-1210.2024.2.296120>

ВЗАЄМОЗВ'ЯЗОК МІЖ ФУНКЦІЄЮ ПЕЧІНКИ, ФУНКЦІЄЮ ЩИТОВИДНОЇ ЗАЛОЗИ, ОЖИРІННЯМ ТА МІКРОБІОТОЮ

НАУКОВО-ДОСЛІДНА ГРУПА:

Півторак Катерина Володимирівна

д-р. мед. наук, професор, кафедра клінічної фармації та клінічної фармакології
Вінницький національний медичний університет ім. М. І. Пирогова, м. Вінниця, Україна.

Іванчук Олександр Володимирович

аспірант, кафедра клінічної фармації та клінічної фармакології
Вінницький національний медичний університет ім. М. І. Пирогова, м. Вінниця, Україна.

Півторак Наталія Анатоліївна

канд. мед. наук, доцент, кафедра внутрішньої та сімейної медицини

Вінницький національний медичний університет ім. М. І. Пирогова, м. Вінниця, Україна

Шевчук Тетяна Валентинівна

Вінницький національний медичний університет ім. М. І. Пирогова, м. Вінниця, Україна.

Анотація. Гіпотиреоз є одним із найбільш поширених ендокринних порушень у популяції України, що чинить суттєвий вплив на метаболічні процеси та виступає важливим предиктором формування метаболічних дисфункцій. Метаболічно-асоційована жирова хвороба печінки (МАСХП) та ожиріння посідають провідне місце в сучасній клінічній практиці у зв'язку з високою поширеністю та потенціалом прогресування до цирозу та серцево-судинних ускладнень. Накопичені дані свідчать про те, що дисбіоз кишечника може виконувати роль ключового медіатора у патогенезі зазначених станів. У даній статті представлено огляд патогенетичних механізмів взаємодії між гіпотиреозом, МАСХП та ожирінням, а також розглянуто мікробіоту як перспективну мішень для терапевтичних стратегій, зокрема із застосуванням пробіотиків та інших методів корекції.

Ключові слова: МАСХП, гіпотиреоз, ожиріння, мікробіота, надмірний ріст бактерій, проникність кишечника, пробіотики.