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Background: Acinetobacter baumannii is an important nosocomial pathogen worldwide. During the current in
vasion of Ukraine, reports of infections caused by this organism have proliferated. Here, we provide a phenotypic 
and genotypic analysis of A. baumannii associated with the conflict.

Methods: Between March 2022 and September 2023, 68 A. baumannii strains were cultured from wounded 
Ukrainian service members in three hospitals in west-central Ukraine. Antibiotic susceptibility and WGS were per
formed on all isolates.

Results: Strains encompassed eight different STs, including the emerging ST78 (and its single locus variant 
ST1077) and globally distributed ST2 lineages, with ST19 being the most common (25%). Fifty strains carried 
at least one acquired carbapenemase (blaOXA-23 or blaOXA-72), with seven strains carrying both. Overall, suscep
tibility ranged from 0% (fluoroquinolones) to 100% (SUL/durlobactam) and all strains had CST MICs <1 mg/mL. 
Notably, all but one ST2 isolates were resistant to FDC, and this correlated with the presence of the blaPER-1 or 
blaPER-7 ESBL genes. In contrast, 8 of 13 ST78 were FDC non-susceptible, but non-susceptibility was correlated 
with the disruption of the pirA siderophore receptor gene by ISAba35. Finally, passage in MEM of one strain 
for 8 days resulted in a mutation of the blaGES-11 ESBL to the blaGES-14 carbapenemase.

Conclusions: Sampling of A. baumannii strains infecting injured Ukrainian soldiers revealed the predominance of 
known (ST2) and emerging (ST19, ST78) lineages carrying carbapenemases. Antibiotic resistance was broad, in
cluding the recently approved catechol-substituted siderophore cephalosporin, FDC, highlighting the immense 
treatment challenges faced by medical personnel during this ongoing conflict.

© The Author(s) 2025. Published by Oxford University Press on behalf of British Society for Antimicrobial Chemotherapy. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/ 
by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction
Despite their widespread presence in the environment, bacteria from 
the genus Acinetobacter were largely absent from medical studies 
until the 1980s, when multiple reports highlighting their prevalence 
in hospitals and their potential to cause significant medical problems 
began to emerge.1 The role of Acinetobacter baumannii as a noso
comial pathogen became more evident during the Iraq and 
Afghanistan conflicts, with numerous infections in wounded patients 
treated in military facilities.2 Notably, these pathogens exhibited high 
antimicrobial resistance, including the emergence of carbapenem- 
resistant strains.3 Since then, A. baumannii has been identified as a 
global problem,4 and carbapenem-resistant A. baumannii has been 
designated as a critical pathogen for the research and development 

of new antibiotics by the WHO (https://www.who.int/publications/i/ 
item/9789240093461; last accessed February 2025).

After the start of the war in eastern Ukraine in 2014, A. bauman
nii became a common pathogen cultured from combat wounds, 
with most isolates being multidrug resistant (MDR).5,6 A subsequent 
genetic analysis of these isolates revealed they belonged to five dif
ferent STs, including global ST1 and ST2 carrying a variety of Class D 
carbapenemases, as well as more regional strains such as ST19, 
ST78 and ST400.7 Following the full-scale invasion by Russia in 
2022, the significant increase in casualties once again prompted 
a rise in A. baumannii wound infections in Ukraine hospitals. In par
allel, reports of A. baumannii being cultured from Ukrainian patients 
admitted to European hospitals were also published, including 
strains belonging to ST2 and ST78.8–12
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We recently reported on the temporal evolution of bacterial 
species from war-related injuries between 2014 and 2023.13 In 
this study, we provide a subsequent comprehensive genomic 
and phenotypic analysis of the 68 A. baumannii strains, including 
their susceptibility to newer antimicrobials.

Methods
Bacteriological methods
From March 2022 to September 2023, bacteriological swabs were taken 
from combat-related injuries of 171 patients who were treated at three 
definitive care hospitals (NATO ROLE III-IV) in central Ukraine. The collec
tion of wound exudate was performed using the BD BBL Culture Swab Plus 
collection and transport swabs (Becton Dickson, USA). Pure cultures were 
isolated from the swabs using two nutrient media: tryptic soy agar and 
chromogenic agar for Acinetobacter (Graso Biotech, Poland). The sam
pling included male soldiers with evident signs of surgical wound infec
tion from whom swabs were collected within 12 h of admission during 
their initial surgical examination with wound bandage opening. Only ex
tremity wounds were included in the sampling. On average, these indivi
duals had been injured 6.2 ± 3.9 days prior to swabbing and had been 
transferred through four to five evacuation hospitals ranging from 
NATO Level II to III before arriving at the final facility.

In total 68 strains of A. baumannii bacteria were isolated and identi
fied (Table S1, available as Supplementary data at JAC-AMR Online). 
Duplicate strains from the same infection source were excluded. 
Antimicrobial susceptibility testing (AST) was initially performed in hos
pital laboratories via the disk diffusion method according to the EUCAST 
with Updates and Supplements.

Additional phenotypic characterization of isolates
All isolates were sent to the Multidrug-Resistant Organism Repository and 
Surveillance Network (MRSN) at the Walter Reed Army Institute of 
Research in the USA, where they underwent additional AST on the Vitek2 
with Cards N808 and XN-32. MICs of FDC (Shionogi Pharma, Japan) and 
SUL-durlobactam (SUL/DUR, Entasis Therapeutics Inc., USA) were deter
mined in triplicate using broth microdilution (BMD) with CLSI guidelines14

at concentrations ranging from ≤0.25 to 128 mg/L for FDC and ≤0.125 to 
64 mg/L for SUL/DUR (with DUR at a fix concentration of 4 mg/L). CST 
MICs were determined in triplicate using the Sensititre Automated AST 
System (Thermo Fisher Scientific, MA, USA) and a customized Sensititre plate 
with concentrations ranging from 0.25 to 16 mg/L. Breakpoints were deter
mined using CLSI recommendations.15 Strains were defined as MDR or XDR 
using a modification of the definitions proposed by Magiorakos et al.16 based 
on the 14 antibiotics (from 11 categories) tested (Table S1). Isolates non- 
susceptible to ≥1 agent in ≥3 of the 11 antimicrobial categories were clas
sified as MDR and isolates non-susceptible to ≥1 agent in at least 8 of the 11 
antimicrobial categories were classified as XDR.

WGS, core genome MLST, SNP calling and phylogenetic 
analysis
WGS of all isolates was performed on an Illumina MiSeq benchtop instru
ment as previously described.17 Briefly, DNA was extracted using the 
DNeasy UltraClean Microbial Kit (Qiagen, Germantown, MD, USA) and li
braries were constructed using the KAPA HyperPlus Library preparation 
kit (Roche Diagnostics, Indianapolis, IN, USA). Libraries were quantified 
using the KAPA Library Quantification Kit—Illumina/Bio-Rad iCycler™ 

(Roche Diagnostics) on a CFX96 real-time cycler (Bio-Rad, Hercules, CA, 
USA). Libraries were normalized to 2 nM, pooled, denatured and diluted 
to a final concentration of 16 pM.

Genomes were sequenced using an Illumina MiSeq platform with the 
MiSeq Reagent Kit v3 (600 cycles; 2 × 300 bp). Kraken2 v2.1.218 was used 

for initial taxonomic assignment and to screen for contamination. De 
novo draft genome assemblies were produced using Shovill v1.1.0 
(https://github.com/tseemann/shovill) with coverage estimates gener
ated using BBmap v38.96. Minimum thresholds for contig size and cover
age were set at 200 bp and 49.5+, respectively. In cases where the 
Kraken2-derived taxonomic assignment was ambiguous, the Genome 
Taxonomy Database (GTDB)19 was used via the GTDB-Tk v2.4.0.20

Genomes were annotated using Bakta v.1.10.4 (https://github.com/ 
oschwengers/bakta). Antimicrobial resistance genes were annotated 
using a combination of ARIBA v2.14.621 and AMRFinderPlus v3.12.8).22

MLST assignment was performed using mlst v2.22.1 (https://github. 
com/tseemann/mlst) using the Pasteur scheme.23

Finally, genome assemblies were used as input for Roary v3.13.0 
(https://sanger-pathogens.github.io/Roary/) and an SNP-based alignment 
of core genes was generated. Recombination was filtered from the align
ment using Gubbins v2.4.1 (https://github.com/nickjcroucher/gubbins) 
and a maximum-likelihood tree was generated with RAxML-NG (v1.1) 
(https://github.com/amkozlov/raxml-ng) using the GTR+G (50 parsimony, 
50 random) model 100 random bootstrap replicates. The tree was im
ported in iTOL (v6.8.1)24 for visualization with metadata.

Serial passage of A. baumannii in the presence of MEM
MRSN 122177, a carbapenemase-negative but MEM intermediate strain 
was selected for further analysis. The strain was initially grown overnight 
in 20 mL of Mueller–Hinton broth (MHB) at 37°C with shaking in 50 mL 
conical tubes with MEM at a final concentration of 2 mg/L. Of the resulting 
growth, 100 µL was then used to inoculate fresh MHB and the A. bauman
nii serially passaged in increasing two-fold concentrations of MEM to 
32 mg/L over a period of 8 days. No further growth was recorded at higher 
concentrations and the resulting strain was analysed using WGS.

Results and discussion
Phenotypic characterization of isolates
Of the 68 of A. baumannii strains in this study, 55 (95.6%) were 
MDR, with 12 (17.6%) also being classified as XDR (Figure 1). 
Notably, all isolates were non-susceptible to the fluoroquino
lones, with 97.1%, 86.7% and 76.4% also being resistant to 
TZP, SAM and SXT, respectively. Similarly high levels of resistance 
were noted for the aminoglycosides (∼60%) and the β-lactams, 
including the carbapenems (76.5%). Notably, 25% were also re
sistant to the recently approved catechol-substituted sidero
phore cephalosporin, FDC (see below for details).25 In contrast, 
only two antibiotics demonstrated broad activity, CST and the re
cently approved combination therapy SUL/DUR (Table S1).26

Two emerging lineages of A. baumannii ST19
A. baumannii ST19 was the largest clonal group identified in this 
study, comprising 23.5% of all isolates cultured. Fifteen of 16 iso
lates carried a Class D carbapenemase, either blaOXA-23 (n = 5) or 
blaOXA-72 (n = 10) (Figure 1). We recently showed that A. baumannii 
ST19 carrying blaOXA-23 form a distinct sub-lineage to those with 
blaOXA-72 and that both lineages have recently emerged in 
Georgia and Ukraine.27 In that study, long-read sequencing re
vealed that blaOXA-72 was encoded on an R3-type plasmid, while 
two identical copies of blaOXA-23 were found, one on an RP-type 
plasmid and the other in the chromosome.27 In this study, all iso
lates carrying blaOXA-23 were only cultured from patients receiving 
care in Hospital 1 (Figure 1), while all but one (MRSN 122249) car
rying blaOXA-72 were cultured from patients in Hospitals 2 and 3. 
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All ST19 isolates were susceptible to CST (MICs < 1 mg/L), FDC 
(MICs ≤ 4 mg/L) and the aminoglycosides, GEN and TOB (<4 mg/L).

Clonal expansion of A. baumannii ST78 and its single 
locus variant ST1077
Thirteen isolates belonged to ST78 and a further 11 belonged to 
its single locus variant (SLV), ST1077. All 11 ST1077 isolates 
formed a cluster of highly genetically related isolates (distinct 
by only 0–18 SNPs) that formed a distinct branch with the more 

genetically diverse ST78 (Figure 1). All isolates in both clonal 
groups carried the blaOXA-72 carbapenemase, but seven ST1077 
isolates had also acquired blaOXA-23. In addition, all but two iso
lates carried the armA 16S methyltransferase gene, and this clade 
also exclusively carried the ESBL gene blaCTX-M-115, a hallmark of 
the ST78 clade.28 Though both ST78 and ST1077 displayed both 
MDR and XDR phenotypes, the exclusive resistance to trimetho
prim/sulfamethoxazole in the ST78 isolates can be attributed to 
the presence of sul2, which is absent in the ST1077 isolates. All 
ST78 isolates were susceptible to CST and SUL/DUR but just 5 of 

Figure 1. Midpoint-rooted, maximum-likelihood phylogenetic tree based on the core genome of 68 A. baumannii strains collected from three hospitals 
in Ukraine, between March 2022 and September 2023. ST, hospital of origin, date of collection, culture type, and presence (closed symbol) or absence 
(open symbol) of selected antimicrobial resistance genes (circle) and phenotypic resistance to select antibiotics (square) are indicated. Serial isolates 
(same patients) are indicated with superscript letters next to the isolate name.
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the 13 isolates were susceptible to FDC (MICs, Figure 1). A compre
hensive analysis of the genomes revealed that the pirA gene in all 
eight FDC resistant isolates was disrupted by an IS, predicted to re
sult in a non-functional PirA siderophore receptor. In contrast, the 
gene was intact in all five FDC-susceptible isolates (Figure 1). 
Disruption of pirA by ISAba35, and truncation of PirA due to pirA 
mutations, have previously been shown to confer FDC resistance 
in A. baumannii.29,30 In contrast, all 13 isolates had identical 
pbp3, piuA, baeR and baeS genes, indicating that FDC resistance 
in this clade was likely mediated via loss of the PirA receptor.

ST78 belongs to International Clone 6 (IC6) and have acquired 
the moniker ‘The Italian clone’ due to their first being isolated 
there in the mid-2000s.31 Since then, the lineage has been spor
adically described in Europe,32,33 though an association with pa
tients treated in Russia has also been reported.28,34 More 
recently, ST78 and ST1077 have been routinely cultured from in
jured Ukrainian service members both before5,7 and after13 the 
full-scale invasion in 2022, as well as among Ukrainian patients 
receiving care in hospitals in Germany and Denmark.11,35 These 
reports and our data suggest that this lineage and its emerging 
SLV ST1077 is likely endemic in Ukraine and further surveillance 
for this emerging clonal group is warranted.

Inter-hospital spread of global clone ST2
Twelve isolates from 11 patients were assigned to ST2, the most 
common lineage of A. baumannii worldwide and strongly asso
ciated with carbapenemase production.36 In agreement, 9 of 
the 12 isolates carried a carbapenemase, either blaOXA-23 (n = 7) 
or blaOXA-72 (n = 2) (Figure 1). Overall, the isolates could be sepa
rated into two sub-lineages: one comprising four blaPER-1-carrying 
strains, two of which also carried blaOXA-72, and another sub- 
lineage comprising the seven blaOXA-23-containing strains 
(Figure 1) in addition to armA and the ESBL blaPER-7. Notably, 
the latter group consisted of highly genetically related isolates 
(distinct by only 1–14 SNPs) cultured from patients across all 
three hospitals between May 2022 and July 2023, suggesting 
that this lineage may be endemic in this area.

All isolates were susceptible to CST and SUL/DUR, but 11 of the 
12 isolates were resistant to FDC, with MICs of 64 and 128 mg/L 
for all 11 isolates. Recently, Poirel et al. have shown that the pres
ence of PER enzymes, and to a lesser extent NDM, results in high 
level FDC resistance in A. baumannii, and the presence of PER-1 
and PER-7 in our strains likely accounts for the observed FDC re
sistance.37 In support of this, MRSN 122444 is the only isolate 
not carrying a blaPER gene and is susceptible to FDC (Figure 1; 
MIC of 0.5 mg/L) and the pbp3, piuA, pirA, baeR and baeS genes 
are identical in all strains.

Conversion of GES11 (ESBL) to GES14 (carbapenemase) in 
ST400
Ten A. baumannii strains belonging to ST400 were recovered from 
10 patients across two hospitals between March 2022 and May 
2023, and none carried a carbapenemase (Figure 1). Three pairs 
of isolates were nearly genetically identical (MRSN 122142 and 
−122157 from hospital 3 distinct by 11 SNPs, MRSN 122227 
and −122130 from Hospitals 1 and 3 distinct by nine SNPs; and 
MRSN 122247 and −122216 from Hospital 1 distinct by only six 
SNPs), suggestive of recent nosocomial transmission events. 

The remaining isolates were more distantly genetically related 
(distinct by 58–114 SNPs), suggestive of a more ancient common 
ancestor in Ukraine hospitals. Seven isolates carried blaGES-11, a 
variant of the ESBL blaGES-1 gene that confers the ESBL phenotype 
and also reduced susceptibility to carbapenems.38 This was con
firmed by antibiotic susceptibility testing, which showed that all 
GES-carrying isolates had elevated MICs to IPM compared with 
their GES-negative relatives (MIC of 1–2 compared with 
<0.25 mg/L), and that only GES-carrying isolates had intermedi
ate susceptibility to MEM (MIC of 4 compared with 0.5 mg/L).

Because all GES-carrying ST400 isolates had intermediate re
sistance to MEM, we wanted to examine the effects of MEM ex
posure on MICs. Previous studies have shown that related 
strains of A. baumannii from Turkey, Gaza and Egypt carried either 
GES-11 and GES-14 (a single loci variant of GES-11 due to a 
Gly170Ser substitution) on the same Class 1 integron structure, 
suggesting a common ancestor.39,40 Therefore, we selected the 
MRSN 122177 strain, an ST400 isolate that carried the blaGES-11 
ESBL, for passage on increasing concentrations of MEM. The strain 
was initially intermediate to MEM (MIC = 4 mg/L) and after pas
sage for 8 days on increasing concentrations of MEM, the MICs 
had increased to 32 mg/L, with a corresponding increase in IPM 
MICs from 2 mg/L (susceptible) to >32 mg/L (resistant). WGS re
vealed that increased resistance to both carbapenems could be 
traced to a single non-synonymous point mutation within 
blaGES-11 that resulted in the canonical Gly170Ser substitution re
sulting in the GES-14 carbapenemase.40

Previously, ST400 has been cultured from Ukrainian service 
members injured in eastern Ukraine prior to the 2022 invasion, 
but none of the isolates from that study carried blaGES.7 More re
cently, Fursova et al. described an ST400 strain cultured in 2018 
from the glioma of a 58-year-old woman at a Moscow neurosur
gery ICU.34 However, unlike the strains in this study, their isolate 
carried blaPER-1 and blaGES-1. Other sporadic detections of this 
clone have been described in Germany41 and Brazil,42 but the 
true distribution of this emerging clone remains obscure.

Sporadic detection of other A. baumannii lineages
Six additional isolates from five patients were also cultured during 
the period of this study. Two ST1 isolates carrying the blaOXA-23 
carbapenemase were cultured from the same patient at 
Hospital 1 in May 2023, and both isolates were genetically identi
cal. Similarly, in April 2023, a single ST15 isolate carrying no major 
antibiotic resistance genes was cultured from a patient in Hospital 
3. Finally, three ST79 isolates were cultured from the war wounds 
of three separate patients: one in Hospital 3 in May 2022 and two 
from patients in Hospital 1 in April and May 2023 (Figure 1).

Conclusions
In the context of traumatic epidemics, such as wars, additional fa
vourable conditions for the proliferation of MDR organisms are cre
ated, which is confirmed by our results. In our study, all but two 
isolates were MDR, almost triple the rates observed early in the 
Iraq and Afghanistan conflicts.43 This disappointing dynamic can 
be explained by the force majeure of the medical care system in 
a large-scale war, which complicates the implementation of infec
tion control measures.44 Carbapenemase-producing A. baumannii, 
particularly those carrying blaOXA-23 and blaOXA-72, were found 
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across all three hospitals, with just CST and SUL/DUR demonstrating 
broad coverage. The ultimate source of these isolates remains to be 
determined, but lessons learned during the Iraq and Afghanistan 
conflicts have emphasized the essential need for robust surveil
lance and screening of patients upon admittance to hospitals.45

Studies during these conflicts indicated that it was unlikely that 
wounds were being colonized at the time of injury due to the lack 
of MDR bacteria upon initial trauma.46,47 Instead, it has been postu
lated that nosocomial transmission was responsible,48 as recently 
confirmed for a clone of ST1 A. baumannii cultured from 30 patients 
at a major US military hospital during this period.49

Controlling and preventing the spread of these pathogens is 
challenging, but an aggressive approach that included hand hy
giene, contact barrier precautions, patient and staff cohorting, 
chlorhexidine oral care, reducing the duration and spectrum of 
surgical antimicrobial prophylaxis, education and command em
phasis were instrumental in reducing the rates of ventilator- 
associated pneumonia (VAP) rate (VAP per 1000 ventilator-days) 
from 60.6 to 11 in just 6 months.50 Adherence to these strict pro
tocols, combined with continued monitoring and surveillance, are 
essential to understand the transmission of these pathogens bet
ter and implement effective controls to prevent their spread.
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