

International Science Group
ISG-KONF.COM

VII

INTERNATIONAL SCIENTIFIC
AND PRACTICAL CONFERENCE
«DEVELOPMENT OF MODERN SCIENTIFIC
TECHNOLOGIES IN THE ERA OF GLOBALIZATION»
Berlin, Germany
October 14-17, 2025

ISBN 979-8-89814-215-5 DOI 10.46299/ISG.2025.2.7

DEVELOPMENT OF MODERN SCIENTIFIC TECHNOLOGIES IN THE ERA OF GLOBALIZATION

UDC 01.1

The 7th International scientific and practical conference "Development of modern scientific technologies in the era of globalization" (October 14-17, 2025) Berlin, Germany. International Science Group. 2025. 237 p.

ISBN - 979-8-89814-215-5 DOI - 10.46299/ISG.2025.2.7

EDITORIAL BOARD

Pluzhnik Elena	Professor of the Department of Criminal Law and Criminology Odessa State University of Internal Affairs Candidate of Law, Associate Professor
Liudmyla Polyvana	Department of accounting, Audit and Taxation, State Biotechnological University, Kharkiv, Ukraine
Mushenyk Iryna	Candidate of Economic Sciences, Associate Professor of Mathematical Disciplines, Informatics and Modeling. Podolsk State Agrarian Technical University
Prudka Liudmyla	Odessa State University of Internal Affairs, Associate Professor of Criminology and Psychology Department
Marchenko Dmytro	PhD, Associate Professor, Lecturer, Deputy Dean on Academic Affairs Faculty of Engineering and Energy
Harchenko Roman	Candidate of Technical Sciences, specialty 05.22.20 - operation and repair of vehicles.
Belei Svitlana	Ph.D., Associate Professor, Department of Economics and Security of Enterprise
Lidiya Parashchuk	PhD in specialty 05.17.11 "Technology of refractory non-metallic materials"
Levon Mariia	Candidate of Medical Sciences, Associate Professor, Scientific direction - morphology of the human digestive system
Hubal Halyna Mykolaivna	Ph.D. in Physical and Mathematical Sciences, Associate Professor

DEVELOPMENT OF MODERN SCIENTIFIC TECHNOLOGIES IN THE ERA OF GLOBALIZATION

36.	Damzin O., Khodak T., Hryhortsevych A., Rutska I., Stelmashchuk O.	155
	ETHNIC AND SEX CHARACTERISTICS OF THE STRUCTURE AND LOCATION OF THE HYOID BONE	
37.	Fomina L., Bondarchuk H.	157
	THE STRUCTURE OF THE SMALL INTESTINE WALL IN RATS	
38.	Khegay O.V., Beissegul A.B., Kuatbayeva A.M.	163
	INTEGRATION OF A KNOWLEDGE BASE ON PREANALYTICAL NONCONFORMITIES INTO A LABORATORY INFORMATION SYSTEM IN MEDICAL LABORATORIES	> 40
39.	Sagimbayeva M.Y., Kurmangazhina B.K., Gaifullina A.M., Ali K.N.	169
1	OBESITY AND METABOLIC SYNDROME: CORRELATION BETWEEN VISCERAL FAT AND ADIPONECTIN LEVELS IN YOUNG ADULTS	
40.	Shakhan Y.Y., Nagauova A.T., Zhailaubek A., Arysbek A.N., Kurbanova L.K.	174
	ANTICOAGULANT THERAPY IN ELDERLY PATIENTS WITH ATRIAL FIBRILLATION	
41.	Іванова О.О., Алієв Р.Ф., Алієва Т.Ю.	180
1	СУЧАСНІ КОНЦЕПЦІЇ КЛІНІКО-ЕПІДЕМІОЛОГІЧНИХ ОСОБЛИВОСТЕЙ COVID-19 В УКРАЇНІ У 2020—2025 РОКАХ	
42.	Алієв Р.Б., Федоров Д.М., Харіна М.В.	185
•	СУЧАСНІ КЛІНІКО-ЕПІДЕМІОЛОГІЧНІ ОСОБЛИВОСТІ СТАФІЛОКОКОВИХ ІНФЕКЦІЙ У ДІТЕЙ	
43.	Баранова Н.В., Аксьонова А.С., Юрова А.А.	189
	ІНФЕКЦІЙНІ УСКЛАДНЕННЯ ПРИ БОЙОВИХ ТРАВМАХ	
44.	Гаморак Г.П., Кліщ І.П., Ворощук П.В., Грищук М.І., Грищук М.О.	194
	ВПЛИВ КИШКОВОЇ МІКРОБІОТИ НА ІМУННУ ВІДПОВІДЬ	
45.	Григорян Н.А., Лантухова Н.Д.	196
	РОЛЬ ФАРМАКОГЕНЕТИКИ В АНЕСТЕЗІОЛОГІЇ: ВПЛИВ ГЕНЕТИЧНИХ ФАКТОРІВ НА ЕФЕКТИВНІСТЬ І БЕЗПЕКУ АНЕСТЕТИКІВ	(÷

MEDICINE DEVELOPMENT OF MODERN SCIENTIFIC TECHNOLOGIES IN THE ERA OF GLOBALIZATION

THE STRUCTURE OF THE SMALL INTESTINE WALL IN RATS

Fomina L.

Professor of the Department of Human Anatomy Vinnytsia National Medical University named after M.I.Pyrogov

Bondarchuk Hanna

PhD , University of Plymouth Peninsula Medical School Faculty of Health

The work presents the morphology and morphometry of the normal rat jejunum wall. The results of the work conclude that the structure of the normal rat wall does indeed correspond to that in the human body and can serve as a subject for experimental studies, in particular when various negative factors affect the small intestine wall.

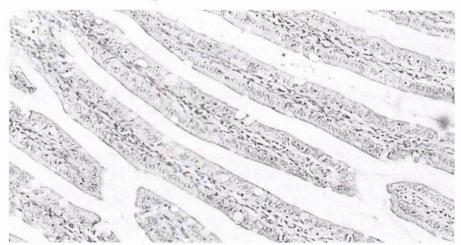
Key words: rats, small intestine, microcirculation, microscopic investigation, lymphoid nodules.

The structure of the small intestine wall of rats and humans is almost similar. Due to the spread of pharmacological production and the possibility of studying the modeling of some pathological conditions and their course, the study of the structure of the rat wall and its microcirculatory bed is necessary to replenish modern morphological information and for the correct extrapolation of the obtained data to the human body. Such a study is also a necessary prerequisite for planning and conducting experimental research.

The material for studying the normal structure of the wall of the small intestine of rats was biopsies of their small intestine (10 individuals) of male sex, weighing up to 180 g. Before being removed from the experiment, the rats were in a 14-day quarantine in the conditions of the vivarium of the scientific and experimental clinic of the Vinnytsia National Medical University named after M.I. Pirogov on a standard diet, with free access to water under 12-hour light day. Rats were removed from the experiment by dislocation of the cervical vertebrae under intrapleural thiopental anesthesia. Before removal from the experiment, the rats' digestive tube was filled with air as much as possible through the esophagus.

After withdrawal from the experiment, small intestine biopsies were taken at five locations for correct calculation of components. The study took into account the recommendations for laboratory animals and received permission from the Bioethics Committee of the Vinnytsia National Medical University named after M.I. Pirogov (protocol No. 15 of 06.12. 2024), Experimental material (rat jejunum) was fixed in 10% neutral formalin solution, washed with running water, dehydrated in alcohols of increasing concentration and embedded in paraffin. Sections 5-7 µm thick were made on a rotary microtome. To study morphocytoarchitectonics, hematoxylin-eosin and

MEDICINE DEVELOPMENT OF MODERN SCIENTIFIC TECHNOLOGIES IN THE ERA OF GLOBALIZATION


Van Gieson staining were used (to determine changes in the specific gravity of the connective tissue of the small intestine wall).

Statistical processing of the results was carried out in the package "STATISTICA 5.5" (owned by the Central Research Institute of the Pirogov National Medical University, license number AXHR910A374605FA) using parametric methods of data evaluation. Based on the Student's t-test, the reliability of the difference in mean values was determined. Attention was paid to indicators whose difference in values was significant (p<0.05)) [2].

Results: The jejunum of rats was gray-pink in color, shiny, moist, and had a typical structure – the inner lining was mucous, the submucosal layer, the muscularis mucosae, and the serosa.

The mucous membrane of the jejunum was gray-pink in color, uniform in thickness – 489.8±31.2 microns and consisted of three layers – epithelial, lamina propria of the mucous membrane with a layer of muscles. The relief of the mucous membrane was represented by circular folds, villi and crypts. The epithelial lining was represented by a single-layered villous columnar epithelium [3, 4].

During histological examination, the mucosa of the jejunum was represented by intact finger-shaped villi (Fig. 1), at the base of which was located loose connective tissue of the mucosal lamina propria.

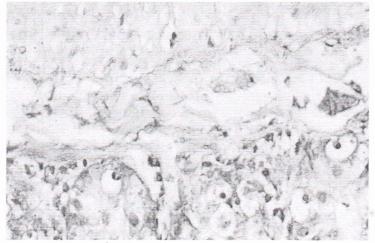
Fig. 1. Villi of correct cytoarchitectonics and shape. Normal intestinal lumen of rats. Hematoxylin-eosin. Magnification X200 [The authors].

The lamina propria contained single smooth muscle cells, between which were located microcirculatory vessels, mainly capillaries. On the surface of the villus there were three types of enterocytes - columnar epithelial cells measuring $21.58\pm0.69~\mu m$, with a border of microvilli forming striated border, goblet-shaped exocrinocytes that produce mucus and occur with a frequency of 18.43 ± 2.17 in one villus, and single exocrinocytes with acidophilic granules, the number of which was no more than 1% of epithelial cells, were located in the lower third of the villi and in the crypts.

Columnar epithelial cells were connected by tight junctions, which were formed from locking plates constructed from tonofilaments at the apical part of the columnar

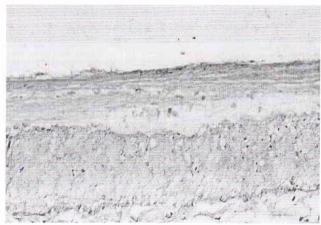
MEDICINE DEVELOPMENT OF MODERN SCIENTIFIC TECHNOLOGIES IN THE ERA OF GLOBALIZATION

epithelial cells. This structure prevents the entry of substances into the cell from the intestinal lumen.


Between the villi we observed crypts with a depth of $148.5\pm10.9~\mu m$, which were formed by tubular ingrowth of the epithelium into the lamina propria of the mucous membrane, and contained the same cells. At the bottom of the crypt we noted prismatic cells with a large number of granules, which we considered to be exocrinocytes with acidophilic granularity. The exit from the crypt into the lumen of the small intestine was located between the base of two adjacent villi. We noted the uniform height of the villi, which was $300.3\pm8.53~\mu m$. There were also single destroyed villi with desquamation of epithelial cells in the apical zone.

The lamina propria of the mucosa was represented by loose connective tissue, which contained many elastic and reticular fibers, and plexuses of hemomicrocirculatory vessels arranged in two layers. In some places, there were accumulations of lymphocytes in the form of single lymphoid follicles.

The extracellular matrix of the lamina propria of the jejunal mucosa was represented by plasma cells, stromal and neutrophilic lymphocytes and leukocytes, and tissue basophils.


In the villi, a classic pattern of vascular arrangement of the lamina propria of the mucosa was observed: arterioles, precapillaries, capillaries, postcapillaries, venules. The submucosal base was formed by loose connective tissue with inclusions of blood and lymphatic vessels (Fig. 2).

The muscularis mucosa had a two-layer structure with fibers located in longitudinal and circular directions (Fig. 3.4). The distribution of the specific gravity of the structural elements of the lamina propria of the mucosa, the submucosa and the muscularis mucosa in control rats is presented in Figures 3, 4, 5.

Fig. 2. Submucosa with normal cytoarchitecture. Jejunum of the control group of rats. Hematoxylin-eosin. Magnification X400 [The authors].

MEDICINE DEVELOPMENT OF MODERN SCIENTIFIC TECHNOLOGIES IN THE ERA OF GLOBALIZATION

Fig. 3. Muscular membrane with normal cytoarchitecture. Jejunum of control group of rats. Hematoxylin-eosin. Magnification X400 [The authors].

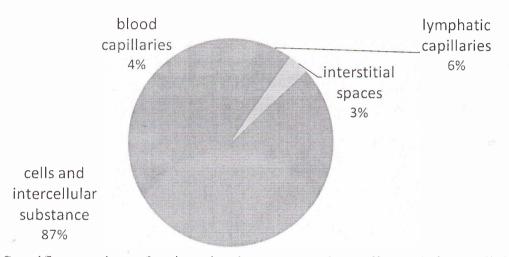


Fig. 4. Specific gravity of microcirculatory vessels, cells and intercellular substance in the lamina propria of the jejunal mucosa of the control group of rats.

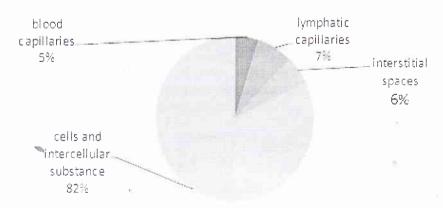
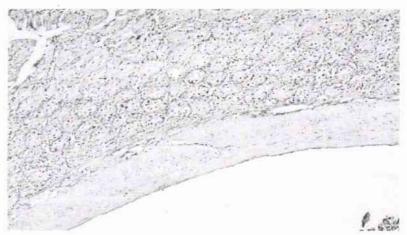


Fig. 5 Specific gravity of microcirculatory vessels, cells and intercellular substance in the submucosa of the jejunum of the control group of rats.


MEDICINE DEVELOPMENT OF MODERN SCIENTIFIC TECHNOLOGIES IN THE ERA OF GLOBALIZATION

The activity of tissue regeneration of the jejunum was determined: the mitotic index was 17 ± 2.28 ; the apoptotic index was 7.7 ± 0.39 . Thus, the activity of tissue regeneration in the control group of animals was 2.2 ± 0.19 . Pathological mitoses (chromosome geometry disorders, K-mitoses) were not noted. Mitotic figures were more common in the lower third of the villus and very rarely in the middle and upper.

A moderate amount of fiber was found in the lumen of the jejunum of intact animals.

The main part of the connective tissue in the preparations of the control group of rats was the submucosal base (Fig. 6). The specific weight of the connective tissue in the villi and in the lamina propria of the mucous membrane was $3.13\pm0.41\%$.

Thus, as a result of the analysis conducted in this section, material was obtained for a correct comparison of the data with the following experimental ones.

Fig. 6. Location of connective tissue (red). Jejunum of rats. Van Gieson. Magnification X200 [The authors].

Thus, the structure of the rat wall normally corresponds to that in the human body and can serve as a subject for experimental studies, in particular when various negative factors affect the wall of the small intestine.

Reference:

- 1. Avtandilov T. G. Medical morphometry / T. G. Avtandilov. M.: Medicine, 1990.-382~p.
- 2. Bondarchuk G. O. Comparative characteristics of morphological changes in the small intestine of rats during the use of cyclophosphamide and a combination of cyclophosphamide with benzofurocaine at long-term follow-up / G. O. Bondarchuk / Morphological aspects of microcirculation in normal and pathological conditions: Mat. Scientific-Practical Conf. (June 17-18). Ternopil, 2011. P. 23-24.
- 3. Gryn V. G. General anatomical characteristics of the small intestine of white rats / V. G. Gryn // Current problems of modern medicine: Bulletin of the Ukrainian Medical Stomatological Academy. 2024. Issue 4 (64), vol.1.

MEDICINE DEVELOPMENT OF MODERN SCIENTIFIC TECHNOLOGIES IN THE ERA OF GLOBALIZATION

4. Kravets V. V. Morphological changes in the small intestine under the influence of various endogenous and exogenous factors / V. V. Kravets // Bulletin of the Sumy State University. – Series "Medicine". – 2023. - N. 1. – P. 5-15.