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Electrophysiological recordings of brain activity show both oscillatory dynamics that typically are analyzed in the time-frequency 
domain to describe brain oscillatory phenomena and scale-free arrhythmic activity defined as neural noise. Recent studies consider this 
arrhythmic fractal dynamics of neural noise as a sensitive biomarker of a number of cognitive processes, activity of neurotransmitter 
systems, changes that accompany neurodegenerative and psychiatric disorders including alcohol use disorder. We tested the changes in 
neural noise induced by acute alcohol intoxication in the lateral septum for the entire spectrum (1–200 Hz) of local field potential signal 
and for frequency specific ranges (delta, theta, beta, gamma and epsilon bands). Five male Wistar rats were implanted with intracranial 
electrodes and local field potential signal was measured for baseline activity and activity induced by acute ethanol intoxication (2 g/kg). 
Change in neural noise dynamics was assessed as a change in the slope of linear regression fit of power spectral density curves in double 
logarithmic scale. In our study alcohol resulted in lower incline of scale-free activity in the lateral septum for high frequency range and for 
the whole spectrum, which is interpreted generally as increase in neural noise and change in neuronal processing in a more stochastic way 
initiated by the acute alcohol intoxication. At the same time, we observed decrease in neural noise for low frequency range. The observed 
changes may be related to the shift of the excitatory-inhibitory balance towards inhibition and changes in neurotransmission mostly in the 
GABAergic system. Scale-free activity was sensitive in the conditions of acute alcohol intoxication, therefore to understand its role in 
alcohol use disorder we need more data and studies on the underlying processes. Future studies should include simultaneous recordings 
and analysis of arrhythmic dynamics with the oscillatory and multiunit spiking activity in the lateral septum. It can reveal the contribution 
of different-scale processes in changes driven by acute alcohol intoxication and clarify the specific electrophysiological mechanisms.  

Keywords: neural noise; local field potential; LFP; ethanol; arrhythmic activity; neural activity; rats.  

Introduction  
 

Alcohol use disorder (AUD) is a chronic relapsing disorder characte-
rized by non-controlled alcohol consumption with periods of abstinence 
and relapses. AUD imposes a heavy economic burden and is limited to 
therapy possibilities. Alcohol addiction is related to the complex adaptive 
neuroplastic changes in a number of brain areas which evolve through the 
consecutives stages of the cycle of abuse: stage I – acute alcohol intoxica-
tion, stage II – withdrawal/negative effect, stage III – preoccupation/cra-
ving (Koob & Volkow, 2016). Despite the fact that many studies covered 
many aspects of alcohol dependence, there is still a gap in the integral 
understanding of the disease. This complexity of AUD is associated with 
involvement of multiple brain areas, neuronal circuits and neurotransmit-
ter systems, which contribute to the disease at the different stages to vari-
ous degrees. The key problem in the search of therapy for AUD is deter-
mining and unifying the potential targets for treatment.  

The lateral septum (LS) is a part of the limbic and reward system 
which sends afferent and efferent projections to many subcortical and 
cortical brain areas including the ventral tegmental area, amygdala, bed 
nucleus of stria terminalis, nucleus accumbens, hippocampus, prefrontal 
cortex, etc. It is suggested that LS is involved in the formation of wide 
class of addictions and for instance AUD (Deng et al., 2019; Gárate‐Pérez 
et al., 2021). In the current model of addiction, cycle the role of LS has not 
been determined unequivocally, implying that LS participates in forma-
tion of associations between alcohol and contextual stimuli, goal-
motivated behaviour and its shift to habit that is observed in addiction, 
regulation of stress response, memory and emotion development. Mani-
pulations with LS changed the course of addiction eliminating the rein-

forcing action of alcohol (Jonsson et al., 2017), blocking conditional place 
preference for different substance of abuse (Sartor & Aston-Jones, 2012; 
Gárate‐Pérez et al., 2021), attenuating intake and preference of alcohol 
(Ryabinin et al., 2008).  

Brain activity detected by the most commonly used electrophysiolo-
gical techniques shows oscillatory dynamics that is typically analyzed in 
time-frequency domain to describe brain oscillatory phenomena (Buszaki, 
2004) and broadband scale-free arrhythmic background activity, characte-
rized as 1/f noise or pink brain noise (Freeman, 2004; Muthukumaraswa-
my & Liley, 2018). Oscillatory activity is considered to emerge from cor-
related neuronal activity at the different scales (Buszaki, 2004; Başar, 
2006; Womelsdorf et al., 2007). The neural noise is ubiquitous through 
the nervous system and reflects broadband generalized variability through 
neuronal populations (Miller & Katz, 2010; Voytek & Knight, 2015). 
1/f neural noise can be extracted from the power spectra of electroence-
phalogram (EEG), electrocorticogram and from local field potential (LFP) 
(Wen & Liu, 2016; Molina et al., 2020). The advantages of obtaining 
spectral information from intracranial recordings such as LFP is the much 
wider frequency range (up to 400 Hz) by contrast to EEG where the in-
formative frequency range is limited to 70 Hz due to intense attenuation of 
neural activity by the soft tissues and the skull. In fact it is arrhythmic acti-
vity that forms the major part across the entire spectrum. However, there is 
a lack of comprehensive knowledge of the underlying processes and 
precise interpretation of scale-free activity, the involvement of neural noise 
in the processing of information, and the pathological changes are being 
intensely studied. The recent studies reviewed neural noise as predictors of 
ageing impairments in cognitive functions (Voytek et al., 2015; Dave et 
al., 2019) and psychiatric disorders (Molina et al., 2016; Clark et al., 2019; 
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Veerakumar et al., 2019). Neural noise demonstrated sensitivity to the 
activity of neurotransmitter systems and drug-induced changes, including 
alcohol (Petermann et al., 2019; Molina et al., 2020; Stock et al., 2020). 
In this study, we focused on how alcohol changes the scale-free dynamics 
of neural noise extracted from the local field potential spectrum in the 
lateral septum for different frequency bands in range 1–200 Hz.  
 
Materials and methods  
 

The study was approved by the Ethics Committee of National Piro-
gov Memorial Medical University, Vinnytsya, Ukraine. All animal expe-
riments were conducted according to the recommendations of “Guide to 
the care and use of laboratory animals” (8th edition, National Academy 
Press, Washington, 2010) and the EU Directive 2010/63/EU for care and 
use of laboratory animals and with the European Convention for the Pro-
tection of Vertebrate Animals Used for Scientific Purposes (Strasbourg, 
1986). Eight male Wistar rats were used for the experiment (m = 170–
250 g; 3 months, Bogomoletz Institute of Physiology of National Acade-
my of Science, Kyiv, Ukraine). The rats were housed in cages (one rat per 
cage) for adaptation under controlled light, temperature and humidity con-
ditions with free access to water and food.  

Surgery and electrode implantation: combination of ketamine 
(90 mg/kg) and xylazine (12 mg/kg) in intraperitoneal (ip) injections were 
used for anesthesia. Rats were placed in the stereotaxic instrument for 
surgery on the heating pad to maintain constant temperature during the 
surgery and experiment. A skull hole was drilled in the accordance with 
the coordinates of LS: AP + 0.53 mm, ML ± 0.8 mm, DL –5.2 mm (Pax-
inos & Watson, 2006) and microelectrode array was implanted into LS 
(with micromanipulator step 5 μm). Location was confirmed by electro-
lytic lesions with direct current (5 mA, duration 12 s).  

LFP recordings and data analysis: LFP of spontaneous activity was 
recorded with 8-channel tungsten electrode 10 minutes for basic activity 
and 20 minutes for period of acute alcohol intoxication. Acute intoxication 
was modelled by ip injection of 15% solution of ethanol (2 g/kg). LFP 
was recorded with the data acquisition module (Chaikovska et al., 2019). 
The signal was digitalized with the sampling rate 20,880 samples/channel. 
Offline signal processing was performed in Matlab, Mathworks. The raw 
signal was digitally filtered with 5th order low pass Butterworth filter with 
cutoff frequency of 400 Hz and downsampled to the 1,305 samples/chan-
nel. Segments with duration of 5 minutes for baseline activity and acute 
intoxication were used for analysis.  

Typically Welch power spectral density (PSD) estimation method 
was used to analyze spectral characteristics of LFP signal and powers of 
frequency specific bands. Analysis of scale free dynamics can also be as-
sessed from spectrum. Neural noise has power law or 1/fβ behaviour. 
Parameter β is used as estimate of neural noise behaviour. Linear fit of 
PSD (see Equation 1) in double logarithmic coordinates gives an estima-
tion of frequency scaling exponent by the slope of the line β, where P is 
the PSD of scale free part of spectrum, f is the frequency, α is intercept and 
β is the slope of the line:  

log(P) = α-βlog⁡(f)                                          (1) 
However, PSD obtained with Welch technique contains both oscilla-

tory activity (Buzsáki & Draguhn, 2004) and the scale free or fractal dy-
namics (Miller et al., 2009; Stock et al., 2020). Important oscillations affect 
the power distribution and behaviour of linear fit (Dave et al., 2018). Seve-
ral techniques were used to split oscillations and scale-free parts of the 
spectra (Yamamoto & Hughson, 1993; Wen & Liu, 2015).  

To separate scale free activity from oscillations we used Irregularly 
Resampled Auto Spectral Analysis (IRASA) as introduced in (Wen & 
Liu, 2016). IRASA was performed in Matlab (code was presented by 
Wen & Liu (2015)) for accurate evaluation of the arrhythmic activity. 
IRASA used the following algorithm to separate the scale free part from 
the general spectrum: the analyzed data were divided in 15 snippets, then 
the fast Fourier transform (FFT) was calculated for each snippet. All pow-
er spectra are averaged to obtain the mixed power spectra of the signal. 
The snippets then were resampled with resampling factors h and 1/h, 
where h varied 1.1 to 1.9 with the step of 0.05. Then the power spectra 
were calculated for resampled snippets of data using the same FFT me-
thod. The geometric mean values of power spectra were calculated for 

each snippet for each h and its reciprocal 1/h. The scale-free part of the 
spectrum was evaluated as a median for all values of h.  

Linear regression was applied in Matlab (with the function robustfit) 
to calculate the slope β of fitted line for scale-free PSD in log-log scale 
(Eq. 1). The detailed graphic chart of signal processing stages to obtain li-
near fit is presented in Figure 1.  

 
Fig. 1. Flowchart of the data processing stages to assess dynamics  

of neural noise by the slope of the linear regression fit β of scale-free part 
of PSD-LFP signal: PSD – power spectral density, LFP – local field  
potential, IRASA – Irregularly Resampled AutoSpectral Analysis,  

SD – standard deviation  

The values for parameter β for baseline activity and acute intoxication 
obtained by linear fit were presented as median ± standard deviation (SD) 
and compared with Mann-Whitney U test (P-value threshold < 0.05 was 
determined as statistically significant). Coefficient of determination for li-
near fit was calculated as R2 = 1 – SSE/SST, where SSE is the sum of 
squared error, SST is the sum of squared total. Statistical analysis was 
performed in Matlab, Mathworks.  
 
Results  
 

The linear regression fit of PSD-LFP was calculated for delta (1–
4 Hz), theta (4–12 Hz), beta (12–30 Hz), gamma (30–90 Hz) and epsilon 
(90–200 Hz) frequency bands and is shown in Figure 2a–e and for whole 
spectrum in range 1–200 Hz in Figure 2f using robust regression method.  

Equations of linear fits of PSD-LFP signal in LS with intercepts and 
slopes for all spectrum and frequency specific bands were summarized in 
Table 1. Slopes of the linear fit were extracted to assess the dynamics of 
neural noise (Table 2). Slope for delta range (Fig. 2a) increased after acute 
alcohol intoxication from –2.74 ± 0.24 to –3.53 ± 0.40 (P < 0.01). Slope 
for theta range (Fig. 2b) of baseline activity was –2.25 ± 0.53 and under 
action of ethanol increased to –2.34 ± 0.57 (P > 0.05). The tendency re-
mained the same for beta band (Fig. 2c) and increase in slope was detected 
from –2.61 ± 0.30 to –2.79 ± 0.31 (P < 0.05). The estimated slopes for the 
gamma frequency band (Fig. 2d) were –2.62 ± 0.32 for baseline PSD and 
–2.37 ± 0.27 after ethanol injection (P < 0.05). Analysis of linear fit of the 
epsilon band (Fig. 2e) revealed the change in regression parameters –2.33 ± 
0.26 compared with –1.47 ± 0.10 (P < 0.01) under action of ethanol. Slope 
for the whole spectrum (Fig. 2f) tended to flattening with the parameter of 
regression –2.57 ± 0.30 for baseline activity against –2.15 ± 0.23 for acute 
intoxication (P < 0.05).  
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Fig. 2. Linear fit for scale-free LFP-PSD of lateral septum for delta frequency range (A), theta frequency range (B), beta frequency range (C),  

gamma frequency band (D), ultrafast (epsilon) frequency band (E) and for all spectrum (F); blue dots – baseline activity, red dots – activity during  
acute alcohol intoxication, green line – linear fit for baseline activity, pink line – linear fit for activity during acute alcohol intoxication;  

PSD – power spectral density, EtOH – ethanol intoxication; n = 8  

Table 1  
Linear fit equation for PSD-LFP signal in lateral septum  
log10(PSD) = intercept + slope*(log(f))/R-squared for linear fit 

Frequency  
range 

Linear fit  
for baseline activity/R2 

Linear fit for acute  
alcohol intoxication/R2 

Delta, 1–4 Hz 4.03 – 2.74*log(f), R2 = 0.99 4.49 – 3.53*log(f), R2 = 0.99 
Theta, 4–12 Hz 3.73 – 2.25*log(f), R2 = 0.89 3.76 – 2.34*log(f), R2 = 0.88 
Beta, 12–30 Hz 4.12 – 2.61*log(f), R2 = 0.96 4.34 – 2.79*log(f), R2 = 0.99 
Gamma, 30–90 Hz 4.10 – 2.62*log(f), R2 = 0.99 3.77 – 2.37*log(f), R2 = 0.99 
Epsilon, 90–200 Hz 3.49 – 2.33*log(f), R2 = 0.98 2.05 – 1.47*log(f), R2 = 0.97 
All range, 1–200 Hz 4.01 – 2.57*log(f), R2 = 0.99 3.45 – 2.15*log(f), R2 = 0.98 

Table 2  
Change in slope β of linear regression fit of PSD-LFP signal  
in lateral septum for frequency specific bands (median ± SD; n = 8)  

Frequency  
range 

Slope for PSD 
(baseline activity) 

Slope for PSD 
(acute intoxication) 

Signifi-
cance 

Delta, 1–4 Hz –2.74 ± 0.24 –3.53 ± 0.40 P < 0.01 
Theta, 4–12 Hz –2.25 ± 0.53 –2.34 ± 0.57 P > 0.05 
Beta, 12–30 Hz –2.61 ± 0.30 –2.79 ± 0.31 P < 0.05 
Gamma, 30–90 Hz –2.62 ± 0.32 –2.37 ± 0.27 P < 0.05 
Epsilon (ultrafast), 90–200 Hz –2.33 ± 0.26 –1.47 ± 0.10 P < 0.01 
All range, 1–200 Hz –2.57 ± 0.31 –2.15 ± 0.23 P < 0.05 

Values for parameter β which reflect the behaviour and dynamics of 
neural noise for baseline activity and change after the acute alcohol intoxi-
cation for all frequency ranges are summarized in Figure 3.  

Our results revealed that neural noise decreased in the slope of linear 
fit in low frequency range for delta, theta and beta bands and increased in 
high frequency range for gamma and epsilon bands under the action of 
ethanol. As for the behaviour of the entire spectrum, there was flatter 
incline for acute alcohol intoxication.  
 
Discussion 
 

Scale-free arrhythmic activity or neural noise are considered to repre-
sent different aspects of underlying processes in the brain, such as natural 
variability responses of neurons to stimuli (Dinstein et al., 2015), balance 
of excitation-inhibition, activity of specific neurotransmitter systems (Per-
termann et al., 2019), adaptive gating mechanism to stabilize the response 
to stimuli (Daunizeau et al., 2012). The previously prevalent point of view 
where increase in noise leads to decrease in quality of communication, as 
claimed by Shannon (1948), was expanded by several modelling studies 
supported by the experimental data suggesting that neural noise is benefi-
cial for non-linear systems and can facilitate processing of information by 
complex neuronal networks (Kosko & Mitaim, 2003; Miller & Katz, 
2010; McDonnell & Ward, 2011). Neural noise up to some threshold can 
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help to perceive weak stimuli in the threshold-dependent systems, when 
weak signals would not reach detection level in noise-free conditions 
(Kosko & Mitaim, 2003; González-Villar et al., 2017). In addition to clas-
sical approaches based on brain oscillations analysis, the neural noise pro-
vides complementary information about neural dynamics. Thus, it shows 
perspective as a sensitive biomarker to detect changes in neural processes 
(Voytek et al., 2015; González-Villar et al., 2017; Clark et al., 2019; Dave 
et al., 2019).  

  
Fig. 3. Change in the dynamics of neural noise assessed from  

the slope β of linear fit for PSD-LFP in the lateral septum: baseline activity  
(blue bars) compared with acute alcohol intoxication (yellow bars);  

* – P < 0.05, ** – P < 0.01; UF (epsilon) – ultrafast range, PSD – power 
spectral density, LFP – local field potential; EtOH – acute ethanol  

intoxication; median ± SD, n = 8  

Acute alcohol intoxication changed LFP profile in LS for all frequen-
cy bands estimated in frequency domain by power analysis, and the most 
significant changes in power were detected for delta, gamma and epsilon 
frequency ranges (Porjesz & Begleiter, 2003; Rangaswamy & Porjesz, 
2014). Delta band is reviewed as responsible for slow coordination bet-
ween distant brain areas, beta and gamma frequency ranges were consi-
dered as reflection of ensemble activity of local neural networks (Buszaki, 
2006; Buszaki & Anastassiou, 2011). Ultrafast oscillations (epsilon band) 
refer to the patterns of cell activations (Schomburg et al., 2012).  

Approximation of the PSD slope with linear fit in double logarithmic 
coordinates, proposed by Voytek (2015) with colleagues, gave an estima-
tion of neural noise. Flattened PSD curve is interpreted as increase of 
neural noise and steeper slope means decrease in noise. In this study we 
observed that alcohol intoxication caused decrease of neural noise or 
steepened slope of PSD for low frequencies with increase in noise for high 
frequency range.  

Increased neural noise for high frequency range likely leads to attenu-
ation of signal-noise ratio in neural networks under the action of alcohol 
(Pertermann et al., 2019) by disorganization of oscillatory synchrony in 
neural networks (Voytek et al., 2015). Decrease in neural noise for beta-
gamma ranges may be interpreted as changes in GABA activity and 
increased inhibition (Gao et al., 2017). The similar effect of alcohol on 
neural noise was described in (Stock et al., 2019) for beta band in human 
volunteers as decrease in 1/f neural noise in the state of rest for EEG re-
cordings during binge drinking and was attributed to activation of GA-
BAergic system under the influence of alcohol. This frequency range is 
specifically sensitive for inhibition driven by GABAA neurotransmission 
(Baumgarten et al., 2016; Osinski et al., 2018; Stock et al., 2019). De-
creased neural noise was observed also for schizophrenia patients and in 
the opinion of the authors the slope of PSD linear fit can be a predictor of 
schizophrenia and the reduced and disorganized neural communications 
during this disease may be explained in this framework (Molina et al., 
2016). Other studies revealed increase in neural noise dynamics in fibro-
myalgia cognitive impairment (González-Villar et al., 2017) and in age-
related changes (Voytek et al., 2015) and these effects were connected 
both with the impairment of excitatory-inhibitory ratio and firing correla-
tions in activity of neurons. Our results may suggest that high doses of al-

cohol tend to change the dynamics of neural noise in an opposite way for 
low and high frequencies as reflection of different underlying processes: 
change in inhibitory-excitatory balance, which can be explained by the 
shift to inhibition at least through enhancing of GABA signaling and in-
creasing in dopaminergic neurotransmission induced by alcohol (Gao 
et al., 2017; Stock et al., 2020), and increase in the variability for individual 
neuronal activity and increase in randomness at population level (Ehlers 
et al., 2012) for high frequency range.  

Our findings and data from different research groups confirmed that 
arrhythmic activity or neural noise changes at the first stage of the addic-
tion cycle, acute alcohol intoxication. Similar effects were observed in 
numbers of other diseases and conditions that involve changes in neural 
activity and neurotransmission along with the impairment in oscillatory 
activity. More data and models revealing the background processes be-
hind the neural noise dynamics are needed to substantially explain these 
changes.  
 
Conclusions  
 

Acute alcohol intoxication had the evident influence on the dynamics 
of neural noise in LS. Our findings revealed that alcohol flattened the scale 
free 1/f signal in LS for gamma and epsilon bands, which is interpreted as 
increase in neural noise. The opposite effect was observed for delta, theta 
and beta frequency ranges. Low frequency bands exhibited the decrease in 
neural noise. The whole spectrum dynamics tended to flatten under the ac-
tion of alcohol and showed increase in arrhythmic activity. As was re-
ported previously, alcohol alters the nonlinear structure of brain activity 
and disorganizes the correlated activity in neuronal pools which was mani-
fested as increase in neural noise, which is consistent with the behaviour 
for the whole spectrum and high frequency range. Decrease in noise for 
low frequency range can be related to the shift to inhibition in excitatory-
inhibitory balance, which was the greatest overall effect of ethanol on the 
brain activity mediated by GABA transmission, as a possible effect of 
dopaminergic modulation that had contributed to the decrease of arhyth-
mical activity.  
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